Выработано новое решение для прогнозирования выработки энергии от возобновляемых источников
👨👩👧👦 Программный модуль создали в Адыгейском государственном университете. Он позволяет оценить объемы вырабатываемой энергии, используя ретроспективные метеорологические данные, причем точность прогнозирования составляет 91–95%.
👨👩👧👦 Как объясняют в пресс-службе вуза, разработка актуальна для данного региона, обладающего большим потенциалом для комплексного использования геотермальных ресурсов, ветроэнергетики, солнечных электростанций, создания малых гидроэлектростанций. При этом прогнозирование объемов энергии, вырабатываемой возобновляемыми источниками энергии, является сложной задачей, поскольку ее поступление характеризуется высокой степенью неопределенности. В соответствии с этим эффективное планирование и использование ресурсов от возобновляемых источников энергии затруднено.
👨👩👧👦Ученые Адыгейского университета в своей работе применили рекуррентные нейронные сети. Они представляют собой математические модели, копирующие работу человеческого мозга, которые используются для обучения машин, анализа данных, распознавания образов и решения сложных задач. Также они содержат обратные связи – несколько копий одной и той же сети, каждая из которых передает информацию последующей копии.
👨👩👧👦 Использование таких нейросетей в прогнозировании может обеспечить повышенную точность, так как позволяет учитывать не только текущие входные данные для прогнозирования, но и дополнительную ретроспективную информацию по параметрам, которые влияют на работу возобновляемых источников энергии: относительной влажности, атмосферному давлению, температуре окружающей среды, скорости и направлению ветра. Используемый набор моделей позволяет произвести выбор наиболее подходящей из них для конкретных условий и имеющегося набора данных; кроме того, есть возможность адаптировать параметры моделей, повышая их точность.
Выработано новое решение для прогнозирования выработки энергии от возобновляемых источников
👨👩👧👦 Программный модуль создали в Адыгейском государственном университете. Он позволяет оценить объемы вырабатываемой энергии, используя ретроспективные метеорологические данные, причем точность прогнозирования составляет 91–95%.
👨👩👧👦 Как объясняют в пресс-службе вуза, разработка актуальна для данного региона, обладающего большим потенциалом для комплексного использования геотермальных ресурсов, ветроэнергетики, солнечных электростанций, создания малых гидроэлектростанций. При этом прогнозирование объемов энергии, вырабатываемой возобновляемыми источниками энергии, является сложной задачей, поскольку ее поступление характеризуется высокой степенью неопределенности. В соответствии с этим эффективное планирование и использование ресурсов от возобновляемых источников энергии затруднено.
👨👩👧👦Ученые Адыгейского университета в своей работе применили рекуррентные нейронные сети. Они представляют собой математические модели, копирующие работу человеческого мозга, которые используются для обучения машин, анализа данных, распознавания образов и решения сложных задач. Также они содержат обратные связи – несколько копий одной и той же сети, каждая из которых передает информацию последующей копии.
👨👩👧👦 Использование таких нейросетей в прогнозировании может обеспечить повышенную точность, так как позволяет учитывать не только текущие входные данные для прогнозирования, но и дополнительную ретроспективную информацию по параметрам, которые влияют на работу возобновляемых источников энергии: относительной влажности, атмосферному давлению, температуре окружающей среды, скорости и направлению ветра. Используемый набор моделей позволяет произвести выбор наиболее подходящей из них для конкретных условий и имеющегося набора данных; кроме того, есть возможность адаптировать параметры моделей, повышая их точность.
The Channel name and bio must be no more than 255 characters long Joined by Telegram's representative in Brazil, Alan Campos, Perekopsky noted the platform was unable to cater to some of the TSE requests due to the company's operational setup. But Perekopsky added that these requests could be studied for future implementation. For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. The group also hosted discussions on committing arson, Judge Hui said, including setting roadblocks on fire, hurling petrol bombs at police stations and teaching people to make such weapons. The conversation linked to arson went on for two to three months, Hui said.
from us