NEURO2LEARN Telegram 771
Forwarded from Machinelearning
🌟 OpenCoder - модели для кодинга, cookbook обучения и датасеты.

OpenCoder - это открытое и воспроизводимое семейство LLM для программирования, включающее 1,5B и 8B базовые и instruct версии, поддерживающее английский и китайский языки.

Семейство моделей OpenCoder обучалось с нуля на 2,5 трлн. лексем, состоящих на 90 % из сырого кода и на 10 % из веб-данных, связанных с кодом, и прошло отладку на более чем 4,5 млн. высококачественных примеров SFT, в итоге достигнув производительности топовых LLM с похожей специализацией.

В открытый доступ опубликованы не только веса моделей и код для инференса, но и датасеты, полный цикл обработки данных, результаты экспериментальной абляции и подробные протоколы обучения.

OpenCoder тщательно протестирован с помощью исследований абляции на различных стратегиях очистки данных и процессах обучения, включая эксперименты по дедупликации на уровне файлов и репозиториев, что обеспечило семейству тщательную проверку производительности моделей.

OpenCoder достигает высокой производительности в различных бенчмарках, что ставит их в ряд SOTA-моделей с открытым исходным кодом для задач программирования.

▶️ Семейство моделей OpenCoder :

🟢OpenCoder-1.5B-Base, 4 тыс. токенов контекста;

🟢OpenCoder-8B-Base, 8 тыс. токенов контекста;

🟠OpenCoder-1.5B-Instruct, 4 тыс. токенов контекста;

🟠OpenCoder-8B-Instruct, 8 тыс. токенов контекста;

▶️ Датасеты:

🟢OpenCoder-SFT-Stage1, 4.21 млн. строк;

🟠OpenCoder-SFT-Stage2, 375 тыс.строк.


▶️ Пример инференса на HF Transformers:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "infly/OpenCoder-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Набор датасетов
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #OpenCoder #Datasets
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/neuro2learn/771
Create:
Last Update:

🌟 OpenCoder - модели для кодинга, cookbook обучения и датасеты.

OpenCoder - это открытое и воспроизводимое семейство LLM для программирования, включающее 1,5B и 8B базовые и instruct версии, поддерживающее английский и китайский языки.

Семейство моделей OpenCoder обучалось с нуля на 2,5 трлн. лексем, состоящих на 90 % из сырого кода и на 10 % из веб-данных, связанных с кодом, и прошло отладку на более чем 4,5 млн. высококачественных примеров SFT, в итоге достигнув производительности топовых LLM с похожей специализацией.

В открытый доступ опубликованы не только веса моделей и код для инференса, но и датасеты, полный цикл обработки данных, результаты экспериментальной абляции и подробные протоколы обучения.

OpenCoder тщательно протестирован с помощью исследований абляции на различных стратегиях очистки данных и процессах обучения, включая эксперименты по дедупликации на уровне файлов и репозиториев, что обеспечило семейству тщательную проверку производительности моделей.

OpenCoder достигает высокой производительности в различных бенчмарках, что ставит их в ряд SOTA-моделей с открытым исходным кодом для задач программирования.

▶️ Семейство моделей OpenCoder :

🟢OpenCoder-1.5B-Base, 4 тыс. токенов контекста;

🟢OpenCoder-8B-Base, 8 тыс. токенов контекста;

🟠OpenCoder-1.5B-Instruct, 4 тыс. токенов контекста;

🟠OpenCoder-8B-Instruct, 8 тыс. токенов контекста;

▶️ Датасеты:

🟢OpenCoder-SFT-Stage1, 4.21 млн. строк;

🟠OpenCoder-SFT-Stage2, 375 тыс.строк.


▶️ Пример инференса на HF Transformers:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "infly/OpenCoder-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Набор датасетов
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #OpenCoder #Datasets

BY Neural Networks | Нейронные сети







Share with your friend now:
tgoop.com/neuro2learn/771

View MORE
Open in Telegram


Telegram News

Date: |

Telegram channels fall into two types: In the “Bear Market Screaming Therapy Group” on Telegram, members are only allowed to post voice notes of themselves screaming. Anything else will result in an instant ban from the group, which currently has about 75 members. The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): Write your hashtags in the language of your target audience.
from us


Telegram Neural Networks | Нейронные сети
FROM American