NN_FOR_SCIENCE Telegram 2363
SWE-Lancer: OpenAI всерьез взялись за ИИ-програмиста

Многие спорят, сможет ли ИИ полноценно заменять разработчиков. Новый эксперимент OpenAI — SWE-Lancer — показывает, насколько мы приблизились к этому будущему.

Исследователи взяли 1 488 реальных задач из фриланс-проекта Expensify на Upwork и показали их передовым ИИ-моделям, чтобы узнать, сколько денег они способны “заработать”. И тут всё серьёзно: за каждую решённую задачу — настоящая выплата, общий призовой фонд — $1 млн!

Задачи собирали для двух сценариев:
1. IC (Individual Contributor) Tasks — ИИ пишет решение задачи и тесты как в реальном продукте .
2. Задачи менеджера — ИИ оценивает несколько предложений решения проблемы и выбирает лучшее, как реальный тимлид.

Оказалось, что даже крутые системы вроде GPT-4о и Claude 3.5 Sonnet (на о3 почему то не проверяли) собрали лишь часть возможной суммы: лучший результат — около $400 000. Цифра внушительная, но говорит о том, что им ещё есть к чему стремиться.

Что тут измеряют и почему это важно?

Сложность задач. Простые мелочи стоят $50, а большие фичи — до $32 000. Эта разница чётко показывает уровень навыков ИИ.
Подход к работе. Одни модели лучше выбирают готовые решения (как тимлид), другие — активнее пишут код.
Путь к улучшению. Раз видим, где ИИ “недозаработал”, мы понимаем, какие умения прокачивать — например, работать сразу с несколькими файлами или тщательнее тестировать.

Пока ИИ хорош в точечных задачах и быстрых решениях, но когда дело доходит до больших, “раскиданных” по проекту проблем, начинаются пробуксовки.

Куда всё идёт?

С большой вероятностью — к тому, что модели продолжат совершенствоваться, научатся быстрее и глубже понимать проекты, а значит и зарабатывать всё ближе к заветным $1 млн. Людям же в этом процессе роль конкурентов видимо не достанется.

SWE-Lancer наглядно демонстрирует, что современные модели не так уж и далеки от полного захвата фриланса. Пока же мы видим, что живой разработчик и его навыки остаются незаменимы, но, как гласит одна из заповедей: “what you can measure - you can improve”.

Статья
👍16🔥157😢5😁3



tgoop.com/nn_for_science/2363
Create:
Last Update:

SWE-Lancer: OpenAI всерьез взялись за ИИ-програмиста

Многие спорят, сможет ли ИИ полноценно заменять разработчиков. Новый эксперимент OpenAI — SWE-Lancer — показывает, насколько мы приблизились к этому будущему.

Исследователи взяли 1 488 реальных задач из фриланс-проекта Expensify на Upwork и показали их передовым ИИ-моделям, чтобы узнать, сколько денег они способны “заработать”. И тут всё серьёзно: за каждую решённую задачу — настоящая выплата, общий призовой фонд — $1 млн!

Задачи собирали для двух сценариев:
1. IC (Individual Contributor) Tasks — ИИ пишет решение задачи и тесты как в реальном продукте .
2. Задачи менеджера — ИИ оценивает несколько предложений решения проблемы и выбирает лучшее, как реальный тимлид.

Оказалось, что даже крутые системы вроде GPT-4о и Claude 3.5 Sonnet (на о3 почему то не проверяли) собрали лишь часть возможной суммы: лучший результат — около $400 000. Цифра внушительная, но говорит о том, что им ещё есть к чему стремиться.

Что тут измеряют и почему это важно?

Сложность задач. Простые мелочи стоят $50, а большие фичи — до $32 000. Эта разница чётко показывает уровень навыков ИИ.
Подход к работе. Одни модели лучше выбирают готовые решения (как тимлид), другие — активнее пишут код.
Путь к улучшению. Раз видим, где ИИ “недозаработал”, мы понимаем, какие умения прокачивать — например, работать сразу с несколькими файлами или тщательнее тестировать.

Пока ИИ хорош в точечных задачах и быстрых решениях, но когда дело доходит до больших, “раскиданных” по проекту проблем, начинаются пробуксовки.

Куда всё идёт?

С большой вероятностью — к тому, что модели продолжат совершенствоваться, научатся быстрее и глубже понимать проекты, а значит и зарабатывать всё ближе к заветным $1 млн. Людям же в этом процессе роль конкурентов видимо не достанется.

SWE-Lancer наглядно демонстрирует, что современные модели не так уж и далеки от полного захвата фриланса. Пока же мы видим, что живой разработчик и его навыки остаются незаменимы, но, как гласит одна из заповедей: “what you can measure - you can improve”.

Статья

BY AI для Всех




Share with your friend now:
tgoop.com/nn_for_science/2363

View MORE
Open in Telegram


Telegram News

Date: |

‘Ban’ on Telegram Activate up to 20 bots How to Create a Private or Public Channel on Telegram? Telegram channels fall into two types: Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.”
from us


Telegram AI для Всех
FROM American