NOTES_OF_PROGRAMMER Telegram 643
Тут на соседнем канале зашла речь про ускорение некоторых алгоритмов с помощью SIMD и я побыстрому накидал реализацию двух - косинусное сходство и корреляцию Пирсона (на скриншоте бенчи для него, для косинусного сходства - в камментах в gist). Алгоритмы как будто прямо таки созданы для Single Instruction/Multiple Data :)

Первый блок на скриншоте - просто мап на Vector<double> и дальнейшие операции, ничо сложного, но даже это даёт 6-кратный буст. Второй блок с float, тут ещё побыстрее, просто потому что элемент в 2 раза тоньше и за один чпок забирается в два раза больше элементов по сравнению с double.

Но вот дальше там был ещё один кейс, когда входные данные короче И double И float - например short. И вот тут становица всё ещё интереснее: отмапленый в Vector256<short> забирает сразу 16 элементов входного массива. Напрямую в Vector256<float> такое не смапиш конечно, поэтому операция двухэтапная - сначала GetLower/GetUpper по 8 элементов экспандяца до int (32 бита = 256 бит), а потом кастяца до float (тоже 256 бит).

Вроде выглядит некоторыми костылями, но это даёт 14-кратный буст даже на длинных массивах, которые гарантированно не влезают в L2 кэш. Если кастить в 32-битный float конечно, с double ситуация пожиже - там буст ровно в два раза хуже (~x7), что вполне логичо :))

Судя по всему выполнение SIMD инструкций тут отлично сочетается с асинхронностью L1/L2-кэша - пока локальные данные кастяца, множаца и складываюца - в кэш подтягиваются следующие порции данных и к моменту следующей итерации они уже там. #simd
👍11🤯5🔥4



tgoop.com/notes_of_programmer/643
Create:
Last Update:

Тут на соседнем канале зашла речь про ускорение некоторых алгоритмов с помощью SIMD и я побыстрому накидал реализацию двух - косинусное сходство и корреляцию Пирсона (на скриншоте бенчи для него, для косинусного сходства - в камментах в gist). Алгоритмы как будто прямо таки созданы для Single Instruction/Multiple Data :)

Первый блок на скриншоте - просто мап на Vector<double> и дальнейшие операции, ничо сложного, но даже это даёт 6-кратный буст. Второй блок с float, тут ещё побыстрее, просто потому что элемент в 2 раза тоньше и за один чпок забирается в два раза больше элементов по сравнению с double.

Но вот дальше там был ещё один кейс, когда входные данные короче И double И float - например short. И вот тут становица всё ещё интереснее: отмапленый в Vector256<short> забирает сразу 16 элементов входного массива. Напрямую в Vector256<float> такое не смапиш конечно, поэтому операция двухэтапная - сначала GetLower/GetUpper по 8 элементов экспандяца до int (32 бита = 256 бит), а потом кастяца до float (тоже 256 бит).

Вроде выглядит некоторыми костылями, но это даёт 14-кратный буст даже на длинных массивах, которые гарантированно не влезают в L2 кэш. Если кастить в 32-битный float конечно, с double ситуация пожиже - там буст ровно в два раза хуже (~x7), что вполне логичо :))

Судя по всему выполнение SIMD инструкций тут отлично сочетается с асинхронностью L1/L2-кэша - пока локальные данные кастяца, множаца и складываюца - в кэш подтягиваются следующие порции данных и к моменту следующей итерации они уже там. #simd

BY 📓 Записки программера




Share with your friend now:
tgoop.com/notes_of_programmer/643

View MORE
Open in Telegram


Telegram News

Date: |

Read now Unlimited number of subscribers per channel A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.” Find your optimal posting schedule and stick to it. The peak posting times include 8 am, 6 pm, and 8 pm on social media. Try to publish serious stuff in the morning and leave less demanding content later in the day. In the next window, choose the type of your channel. If you want your channel to be public, you need to develop a link for it. In the screenshot below, it’s ”/catmarketing.” If your selected link is unavailable, you’ll need to suggest another option.
from us


Telegram 📓 Записки программера
FROM American