Warning: file_put_contents(aCache/aDaily/post/opendatascience/-2527-2528-2527-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Data Science by ODS.ai 🦜@opendatascience P.2528
OPENDATASCIENCE Telegram 2528
Forwarded from Sber AI
AI, который создаёт архитектуры, которые создают будущее

Учёные из Шанхайского университета разработали ASI-ARCH — экспериментальную систему для исследований в области AI. Она уже открыла 106 новых SOTA-архитектур. В отличие от AutoML и NAS, которые требуют постоянного вмешательства человека — ввода различных параметров, корректировки гипотез, анализа результатов — ASI-ARCH работает полностью автономно.

Процесс поиска архитектур включал несколько этапов:
➡️ генерация гипотез — обучение моделей (20 млн параметров) на 1 млрд токенов и отбор тех, что по бенчмаркам (точность и производительность) превзошли базовую гибридную архитектуру DeltaNet для обработки последовательностей
➡️ верификация — масштабирование отобранных моделей до 340 млн параметров, удаление слишком сложных архитектур. Итог — 106 новых SOTA-архитектур
➡️ финальный этап — обучение пяти лучших моделей на 15 млрд токенов и сравнение с флагманами


Одна из лучших архитектур, найденных ASI-ARCH, набрала в тестах 48,51 балла, обойдя лидеров по работе с длинными последовательностями — Mamba2 (47,84) и Gated DeltaNet (47,32).

Где система находит идеи?
Она улучшает проверенные методы вроде гейтинга и свёртки. Это напоминает подход учёных, которые совершенствуют уже существующие теории.

51,7% идей взяты из научной литературы
38,2% — из анализа прошлых экспериментов
10,1% — оригинальные идеи


ASI-ARCH доказала, что AI может не только копировать, но и самостоятельно развивать существующие решения, открывая новые архитектуры.

❤️ — сверхинтеллект всё ближе
🤔 — это лишь прокаченный инструмент
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔154🔥2👏2



tgoop.com/opendatascience/2528
Create:
Last Update:

AI, который создаёт архитектуры, которые создают будущее

Учёные из Шанхайского университета разработали ASI-ARCH — экспериментальную систему для исследований в области AI. Она уже открыла 106 новых SOTA-архитектур. В отличие от AutoML и NAS, которые требуют постоянного вмешательства человека — ввода различных параметров, корректировки гипотез, анализа результатов — ASI-ARCH работает полностью автономно.

Процесс поиска архитектур включал несколько этапов:

➡️ генерация гипотез — обучение моделей (20 млн параметров) на 1 млрд токенов и отбор тех, что по бенчмаркам (точность и производительность) превзошли базовую гибридную архитектуру DeltaNet для обработки последовательностей
➡️ верификация — масштабирование отобранных моделей до 340 млн параметров, удаление слишком сложных архитектур. Итог — 106 новых SOTA-архитектур
➡️ финальный этап — обучение пяти лучших моделей на 15 млрд токенов и сравнение с флагманами


Одна из лучших архитектур, найденных ASI-ARCH, набрала в тестах 48,51 балла, обойдя лидеров по работе с длинными последовательностями — Mamba2 (47,84) и Gated DeltaNet (47,32).

Где система находит идеи?
Она улучшает проверенные методы вроде гейтинга и свёртки. Это напоминает подход учёных, которые совершенствуют уже существующие теории.

51,7% идей взяты из научной литературы
38,2% — из анализа прошлых экспериментов
10,1% — оригинальные идеи


ASI-ARCH доказала, что AI может не только копировать, но и самостоятельно развивать существующие решения, открывая новые архитектуры.

❤️ — сверхинтеллект всё ближе
🤔 — это лишь прокаченный инструмент

BY Data Science by ODS.ai 🦜





Share with your friend now:
tgoop.com/opendatascience/2528

View MORE
Open in Telegram


Telegram News

Date: |

Private channels are only accessible to subscribers and don’t appear in public searches. To join a private channel, you need to receive a link from the owner (administrator). A private channel is an excellent solution for companies and teams. You can also use this type of channel to write down personal notes, reflections, etc. By the way, you can make your private channel public at any moment. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. SUCK Channel Telegram How to create a business channel on Telegram? (Tutorial) A vandalised bank during the 2019 protest. File photo: May James/HKFP.
from us


Telegram Data Science by ODS.ai 🦜
FROM American