Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/partially_unsupervised/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
partially unsupervised@partially_unsupervised P.141
PARTIALLY_UNSUPERVISED Telegram 141
Еще недавно сложно было представить, что я буду постить ссылки на разработки Сбера, но с моей колокольни кажется, что в русскоязычном ML-коммьюнити по влиянию сейчас их опережает только Яндекс, причем разрыв стремительно сокращается. Так вот, я хотел обратить внимание уважаемых читателей на pytorch-lifestream - библиотеку для создания ембеддингов для из последовательностей евентов.

Я сам этой библиотекой не пользовался и в ближайшее время не планирую, мои задачи все больше из другого домена. Но концептуально подход мне кажется очень правильным. Более того, в последнее время я все больше верю, что почти весь прикладной ML сведется к сочетанию относительно сложного representation learning и простых моделей (линейных, kNN, cosine similarity) поверх этих representations. Это в свою очередь приведет к масштабируемому разделению обязанностей: core ML команда будет пилить те самые волшебные representations, а инженеры в продуктовых командах будут учить регрессию на этих фичах.

Мои вера основана на таких наблюдениях:

1) self-supervised и contrastive методы начали прилично работать в разных доменах и модальностях, в т.ч. мультимодально (самый популярный пример - CLIP);
2) архитектуры в разных задачах все больше сближаются (см. восхищение трансформерами в твиттере Карпатого)
3) деплоить и поддерживать такие модели становится проще, чем “классический” ML (всякие бустинги и ручные фичи).
👍40🔥2😁21👎1



tgoop.com/partially_unsupervised/141
Create:
Last Update:

Еще недавно сложно было представить, что я буду постить ссылки на разработки Сбера, но с моей колокольни кажется, что в русскоязычном ML-коммьюнити по влиянию сейчас их опережает только Яндекс, причем разрыв стремительно сокращается. Так вот, я хотел обратить внимание уважаемых читателей на pytorch-lifestream - библиотеку для создания ембеддингов для из последовательностей евентов.

Я сам этой библиотекой не пользовался и в ближайшее время не планирую, мои задачи все больше из другого домена. Но концептуально подход мне кажется очень правильным. Более того, в последнее время я все больше верю, что почти весь прикладной ML сведется к сочетанию относительно сложного representation learning и простых моделей (линейных, kNN, cosine similarity) поверх этих representations. Это в свою очередь приведет к масштабируемому разделению обязанностей: core ML команда будет пилить те самые волшебные representations, а инженеры в продуктовых командах будут учить регрессию на этих фичах.

Мои вера основана на таких наблюдениях:

1) self-supervised и contrastive методы начали прилично работать в разных доменах и модальностях, в т.ч. мультимодально (самый популярный пример - CLIP);
2) архитектуры в разных задачах все больше сближаются (см. восхищение трансформерами в твиттере Карпатого)
3) деплоить и поддерживать такие модели становится проще, чем “классический” ML (всякие бустинги и ручные фичи).

BY partially unsupervised


Share with your friend now:
tgoop.com/partially_unsupervised/141

View MORE
Open in Telegram


Telegram News

Date: |

To delete a channel with over 1,000 subscribers, you need to contact user support “[The defendant] could not shift his criminal liability,” Hui said. Telegram users themselves will be able to flag and report potentially false content. 1What is Telegram Channels? The channel also called on people to turn out for illegal assemblies and listed the things that participants should bring along with them, showing prior planning was in the works for riots. The messages also incited people to hurl toxic gas bombs at police and MTR stations, he added.
from us


Telegram partially unsupervised
FROM American