PYTHON_JOB_INTERVIEW Telegram 1183
NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍3🔥2



tgoop.com/python_job_interview/1183
Create:
Last Update:

NVIDIA показала 7 простых «приемов» на Python, которые мгновенно ускоряют Data Science-пайплайны — без переписывания кода.

🔹 В чём идея?

Многие привычные библиотеки (pandas, NumPy, scikit-learn) можно заменить их GPU-версией, сохранив API.

Это даёт прирост скорости в десятки раз.

🟠 Drop-in замены в коде:
- pandas%load_ext cudf.pandas
- polars.collect(engine="gpu")
- scikit-learn%load_ext cuml.accel
- xgboostdevice="cuda"
- umap%load_ext cuml.accel
- hdbscan%load_ext cuml.accel
- networkx%env NX_CUGRAPH_AUTOCONFIG=True

🚀 Плюсы:
- Минимальные изменения кода (API почти идентичен).
- GPU-ускорение: от 10х до 100х быстрее на больших данных.
- Отлично подходит для ETL, ML и обработки сигналов.

Если ты работаешь с большими данными в Python, достаточно «заменить импорт» и получить колоссальный прирост скорости без боли и переписывания кода.

🚀 Подробнее: developer.nvidia.com/blog/7-drop-in-replacements-to-instantly-speed-up-your-python-data-science-workflows

@data_analysis_ml

BY Python вопросы с собеседований











Share with your friend now:
tgoop.com/python_job_interview/1183

View MORE
Open in Telegram


Telegram News

Date: |

Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. Unlimited number of subscribers per channel 4How to customize a Telegram channel? Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. Channel login must contain 5-32 characters
from us


Telegram Python вопросы с собеседований
FROM American