SAVOSTYANOV_DMITRY Telegram 436
Вышла статья про DALL-E 3

Суть в том, что модели вроде Stable Diffusion, Midjourney и далее по списку часто игнорируют слова в промптах. Вызвано это тем, что они обучались на датасетах из пар <картинка, текст>, где текст зачастую брался из HTML-тега alt text. А как мы знаем, далеко не всегда alt text заполняется качественно. А даже если и заполняется, обычно там есть только краткое описание без деталей про фон, свет, текстуру и тд, которые так важны для контроля генерации.

Авторы обучили “некоторую LLM” генерировать текстовые описания к картинкам. Для этого они использовали CLIP-эмбединги картинок и текстовые описания из интернета. Далее они затюнили LLM на небольшом датасете из хороших, очень детальных описаний картинок.

С помощью полученной LLM авторы разметили новый датасет из пар <картинка, текст>, где 95% текстов были сгенерированы, а оставшиеся 5% состояли из alt text для регуляризации. На этом датасете и обучали DALL-E 3. Качество в процессе измеряли с помощью новой метрики CLIP-S.

На инференсе, чтобы не выбиваться из распределения длинных, детализированных промптов, ваш входной промпт “апскейлят” с помощью GPT-4. Условно, вы пишите “кот в сапогах”, а DALL-E 3 на вход получит “кот в слегка потертых сапогах из коричневой кожи, очень детализированный мех, студийное освещение, монохромный фон”.

Про архитектуру самой модели и процесс обучения информации почти нет.

Статья



tgoop.com/savostyanov_dmitry/436
Create:
Last Update:

Вышла статья про DALL-E 3

Суть в том, что модели вроде Stable Diffusion, Midjourney и далее по списку часто игнорируют слова в промптах. Вызвано это тем, что они обучались на датасетах из пар <картинка, текст>, где текст зачастую брался из HTML-тега alt text. А как мы знаем, далеко не всегда alt text заполняется качественно. А даже если и заполняется, обычно там есть только краткое описание без деталей про фон, свет, текстуру и тд, которые так важны для контроля генерации.

Авторы обучили “некоторую LLM” генерировать текстовые описания к картинкам. Для этого они использовали CLIP-эмбединги картинок и текстовые описания из интернета. Далее они затюнили LLM на небольшом датасете из хороших, очень детальных описаний картинок.

С помощью полученной LLM авторы разметили новый датасет из пар <картинка, текст>, где 95% текстов были сгенерированы, а оставшиеся 5% состояли из alt text для регуляризации. На этом датасете и обучали DALL-E 3. Качество в процессе измеряли с помощью новой метрики CLIP-S.

На инференсе, чтобы не выбиваться из распределения длинных, детализированных промптов, ваш входной промпт “апскейлят” с помощью GPT-4. Условно, вы пишите “кот в сапогах”, а DALL-E 3 на вход получит “кот в слегка потертых сапогах из коричневой кожи, очень детализированный мех, студийное освещение, монохромный фон”.

Про архитектуру самой модели и процесс обучения информации почти нет.

Статья

BY Дмитрий Савостьянов Вещает


Share with your friend now:
tgoop.com/savostyanov_dmitry/436

View MORE
Open in Telegram


Telegram News

Date: |

Co-founder of NFT renting protocol Rentable World emiliano.eth shared the group Tuesday morning on Twitter, calling out the "degenerate" community, or crypto obsessives that engage in high-risk trading. Click “Save” ; To view your bio, click the Menu icon and select “View channel info.” 6How to manage your Telegram channel? The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar.
from us


Telegram Дмитрий Савостьянов Вещает
FROM American