SEEALLOCHNAYA Telegram 1343
Вчера на LMSYS Arena (место, где живые люди вслепую сравнивают генерации разных LLM и выбирают лучшую) появилась странная модель: gpt2-chatbot. И несмотря на то, что по названию можно подумать о слабости модели, она, внезапно, очень хороша. Настолько, что люди гадают, кто же её сделал, является ли это GPT-4.5 / 5, или может это свежий релиз Gemini Ultra 2.0.

Предлагаю вам самим поиграться тут: https://chat.lmsys.org/ (вкладка Direct Chat, там выбрать модель в выпадающем списке). Ограничение всего 8 сообщений в сутки, пользуйтесь с умом (или используйте VPN и режим инкогнито, кек).

На реддите люди тестируют свои задачки, которые якобы не решаются моделями предыдущих поколений, а эта либо щелкает, либо куда ближе к ответу, чем остальные. Треды почитать: 1, 2, 3.

Мой опыт:
— я дал ей простую задачку Show me an example of 3d ray tracing (with python). Set a simple scene, different light sources, etc. и получил полностью работающий код (в 2 или 3 ответа) с первого раза. Он учитывал материал объектов, включая цвет и уровень отражения. У меня получилось отрисовать сферу, на которой было два блика от двух источников света. После я попросил добавить поддержку не только сферы, но любой произвольной 3D-модели. Это заработало со второго раза — новонаписанный код был правильным, но оказалось, что нужно слегка изменить предыдущий. Скормив ошибку, получил работающее решение — и немного покрутив камеру увидел, что движок даже отражения от поверхностей учитывает!
— с таким же промптом (и даже с уточнениями) GPT-4-Turbo выдала лишь чб-рендер одного объекта, в куда менее удобном стиле написания кода. Тут не получилось быстро добавить на сцену объектов, в то время как у обсуждаемой модели всё было очень круто организовано.
— ещё по паре вопросов я заметил, что модель то ли делает паузы (особенно в начале), то ли просто зависает интернет-соединение. Возможно, под капотом есть Retrieval по интернету — и модель опирается на что-то со страниц из поисковика. Пока на Арене всего одна модель ходит в интернет (гугловский Бард), может, аугментировали GPT-4 🤷‍♂️

Что можно сказать про модель:
— Вот тут ребята сделали быстрое тестирование. Модель утверждает, что её сделали OpenAI, она ведётся на те же ловушки странных-редких токенов, на которые ведутся их модели (а другие модели — нет, потому что у них другой набор токенов). Скорее всего, это не просто дообученная LLAMA-3 или какая-то другая модель.
— На Arena для неё используют тот же системный промпт, что и для последней GPT-4-Turbo
— пользователи сравнивали ASCII-арт, просили нарисовать единорога, и модель давала такой же ответ, как и ChatGPT. Причём именно такой же единорог есть в интернете — либо модель его нашла и срисовала, либо выучила наизусть во время тренировки, и теперь воспроизводит. А какие-то рисует лучше 🤷‍♂️
— формат ответа очень напоминает формат ответа Gemini, расписывает всё по пунктам и подпунктам. Мне код, например, писала в 5 или 6 этапов.
— некоторые пользователи говорят, что им ответы модели нравятся теперь меньше( 🔫

Короче, очень интересно, чем окажется модель, и когда это вскроется. И тем более какое у неё будет место на лидерборде. Поживём — увидим!

Но просто напомню, что GPT-4 была запущена как часть Bing Chat за 5 недель до официального анонса 🤡 а потом все такие «вау!»

Пишите в комменты про ваш опыт использования 👇 только не выбирайте слишком сложные задачи, модель прям не настолько лучше, чтобы претендовать на звание AGI.
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/seeallochnaya/1343
Create:
Last Update:

Вчера на LMSYS Arena (место, где живые люди вслепую сравнивают генерации разных LLM и выбирают лучшую) появилась странная модель: gpt2-chatbot. И несмотря на то, что по названию можно подумать о слабости модели, она, внезапно, очень хороша. Настолько, что люди гадают, кто же её сделал, является ли это GPT-4.5 / 5, или может это свежий релиз Gemini Ultra 2.0.

Предлагаю вам самим поиграться тут: https://chat.lmsys.org/ (вкладка Direct Chat, там выбрать модель в выпадающем списке). Ограничение всего 8 сообщений в сутки, пользуйтесь с умом (или используйте VPN и режим инкогнито, кек).

На реддите люди тестируют свои задачки, которые якобы не решаются моделями предыдущих поколений, а эта либо щелкает, либо куда ближе к ответу, чем остальные. Треды почитать: 1, 2, 3.

Мой опыт:
— я дал ей простую задачку Show me an example of 3d ray tracing (with python). Set a simple scene, different light sources, etc. и получил полностью работающий код (в 2 или 3 ответа) с первого раза. Он учитывал материал объектов, включая цвет и уровень отражения. У меня получилось отрисовать сферу, на которой было два блика от двух источников света. После я попросил добавить поддержку не только сферы, но любой произвольной 3D-модели. Это заработало со второго раза — новонаписанный код был правильным, но оказалось, что нужно слегка изменить предыдущий. Скормив ошибку, получил работающее решение — и немного покрутив камеру увидел, что движок даже отражения от поверхностей учитывает!
— с таким же промптом (и даже с уточнениями) GPT-4-Turbo выдала лишь чб-рендер одного объекта, в куда менее удобном стиле написания кода. Тут не получилось быстро добавить на сцену объектов, в то время как у обсуждаемой модели всё было очень круто организовано.
— ещё по паре вопросов я заметил, что модель то ли делает паузы (особенно в начале), то ли просто зависает интернет-соединение. Возможно, под капотом есть Retrieval по интернету — и модель опирается на что-то со страниц из поисковика. Пока на Арене всего одна модель ходит в интернет (гугловский Бард), может, аугментировали GPT-4 🤷‍♂️

Что можно сказать про модель:
— Вот тут ребята сделали быстрое тестирование. Модель утверждает, что её сделали OpenAI, она ведётся на те же ловушки странных-редких токенов, на которые ведутся их модели (а другие модели — нет, потому что у них другой набор токенов). Скорее всего, это не просто дообученная LLAMA-3 или какая-то другая модель.
— На Arena для неё используют тот же системный промпт, что и для последней GPT-4-Turbo
— пользователи сравнивали ASCII-арт, просили нарисовать единорога, и модель давала такой же ответ, как и ChatGPT. Причём именно такой же единорог есть в интернете — либо модель его нашла и срисовала, либо выучила наизусть во время тренировки, и теперь воспроизводит. А какие-то рисует лучше 🤷‍♂️
— формат ответа очень напоминает формат ответа Gemini, расписывает всё по пунктам и подпунктам. Мне код, например, писала в 5 или 6 этапов.
— некоторые пользователи говорят, что им ответы модели нравятся теперь меньше( 🔫

Короче, очень интересно, чем окажется модель, и когда это вскроется. И тем более какое у неё будет место на лидерборде. Поживём — увидим!

Но просто напомню, что GPT-4 была запущена как часть Bing Chat за 5 недель до официального анонса 🤡 а потом все такие «вау!»

Пишите в комменты про ваш опыт использования 👇 только не выбирайте слишком сложные задачи, модель прям не настолько лучше, чтобы претендовать на звание AGI.

BY Сиолошная


Share with your friend now:
tgoop.com/seeallochnaya/1343

View MORE
Open in Telegram


Telegram News

Date: |

The group’s featured image is of a Pepe frog yelling, often referred to as the “REEEEEEE” meme. Pepe the Frog was created back in 2005 by Matt Furie and has since become an internet symbol for meme culture and “degen” culture. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. Hashtags With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020.
from us


Telegram Сиолошная
FROM American