tgoop.com/seo_python_2neuron/32
Last Update:
Как обучаются нейросети, или почему GPT-4 такая умная. Лёгкое субботнее чтиво )🍹
Первые попытки генерации контента с помощью нейросетей я пробовал еще в 2021 году. Это были seq-to-seq модели с механизмом attention. Результат был мягко говоря не очень. Поэтому, когда появилась модель GPT-3, я, помня свой прошлый опыт изначально отнесся скептически, но когда я увидел GPT-4 я просто охренел!
Да именно в GPT-4 произошел квантовый скачок, переход от количества в качество!
Почему GPT-4 такая умная и как происходит обучение модели?
В процессе обучения на вход по очереди подаются тексты с масками, например:
(Маска) дядя самых честных правил
Мой (маска) самых честных правил
Мой дядя (маска) честных правил
Нейросеть пытается угадать какое слово должно быть вместо маски, результат оценивается с помощью метода back propagation (говоря простым языком - поощряется или штрафуется)
В итоге получаются устойчивые связки фраз, которые и обеспечивает гладкий слог. Но нужно понимать, что появление того или иного слова не данность, а вероятность. Именно за этот фактор и отвечает параметр temperature в моделях Open AI
Вопрос, какой текст будет если подать на вход:
Бобр (маска)?
Ответ тут 😆
Мем старый но очень смешной ). ОК а теперь вопросы. А на каком текстовом корпусе обучались всем известные GPT модели? На книгах Толстого и Достоевского? На Википедии? На школьных чатах или может быть на всем сразу?
Какой корпус русского языка они использовали? И использовали ли они вообще корпус русского языка, или как все модели Open AI сначала думают на английском а потом переводят на все остальные языки мира?
В процессе написания @vector_keywords_bot я перепробовал разные модели и в итоге остановился на одной, которая мне показалась наиболее адекватной. Какой именно? Сохраним интригу для следующих постов 😉.
BY SEO Python 2 Нейрона
Share with your friend now:
tgoop.com/seo_python_2neuron/32
