SEO_PYTHON_2NEURON Telegram 73
На каком расстояний должно быть SRW (LSI) слово от ключа? Или как я облажался у Шакина 🙈

Готовясь к эфиру с Михаилом Шакиным я провел массу тестов, и в один момент мне показалось, что чем ближе SRW слово к ключу, тем выше значение косинусной близости, поэтому мне захотелось провести более масштабный эксперимент и поделиться результатами.

ЗЫ: В этом посте и далее я буду употреблять термин SRW (семантически релевантное слово), LSI или то, как его понимают SEOшники, это устоявшееся выражение, примерно как «ксерокопия», но в LSI другая мат. модель, не имеющая ничего общего с моими экспериментами.

Условия и допущения:
1) Методология и подкапотная часть идентична исследованию порядка слов.
2) Ключ поместим в начале предложения и будем к нему цеплять SRW слово на определённом расстоянии.
3) SRW слова берем тут @vector_keywords_bot
4) В качестве нейтрального слова заполнителя используем ‘‘and’’

Пример пар:
[окна] / [окна стекло and and .. and]
[окна] / [окна and стекло and .. and]
[окна] / [окна and and стекло .. and]
………. / ………………………………’…..…
[окна] / [окна and and and .. стекло]

Как думаете, оправдались мои ожидания?
Результаты получились интересными и довольно неожиданными.
Итак, первое, SRW слова влияют на косинусную релевантность пар слово/текст. Как раз об этом я говорил у Михаила. Добавление SRW слов в предложение с ключом, как правило, увеличивает косинусную релевантность.

Второе, как бы не хотелось притянуть за уши теорию, о некоем «окне релевантности» в котором необходимо использовать SRW слова но это не так. Близость SRW слова к ключу не влияет на косинусную релевантность текста, ну или мне не удалось это заметить. Каюсь, поторопился с выводами на эфире у Шакина.

Третье, SRW слова влияют по разному, какие-то больше, какие-то меньше, причем степень влияния не всегда коррелирует если сравнивать в лоб cs(ключ, srw слово). Так например, стеклопакет – самое релевантное слово, оказало меньшее влияние чем уплотнитель, но, скорее всего это погрешность эксперимента.

Ну и совсем неожиданный результат!
Случайным образом выяснилось, что слова явно определяющие интент, например (купить, цена, стоимость, как, что, если, почему) в начале предложения, увеличивают косинусную релевантность пары слово/текст!

В данном эксперименте была использована модель textEmbedding от Яндекса. Хмм, а, что если взять и сделать то же самое для Google? Интересно 🤔 ?
🔥37👍4💯2



tgoop.com/seo_python_2neuron/73
Create:
Last Update:

На каком расстояний должно быть SRW (LSI) слово от ключа? Или как я облажался у Шакина 🙈

Готовясь к эфиру с Михаилом Шакиным я провел массу тестов, и в один момент мне показалось, что чем ближе SRW слово к ключу, тем выше значение косинусной близости, поэтому мне захотелось провести более масштабный эксперимент и поделиться результатами.

ЗЫ: В этом посте и далее я буду употреблять термин SRW (семантически релевантное слово), LSI или то, как его понимают SEOшники, это устоявшееся выражение, примерно как «ксерокопия», но в LSI другая мат. модель, не имеющая ничего общего с моими экспериментами.

Условия и допущения:
1) Методология и подкапотная часть идентична исследованию порядка слов.
2) Ключ поместим в начале предложения и будем к нему цеплять SRW слово на определённом расстоянии.
3) SRW слова берем тут @vector_keywords_bot
4) В качестве нейтрального слова заполнителя используем ‘‘and’’

Пример пар:
[окна] / [окна стекло and and .. and]
[окна] / [окна and стекло and .. and]
[окна] / [окна and and стекло .. and]
………. / ………………………………’…..…
[окна] / [окна and and and .. стекло]

Как думаете, оправдались мои ожидания?
Результаты получились интересными и довольно неожиданными.
Итак, первое, SRW слова влияют на косинусную релевантность пар слово/текст. Как раз об этом я говорил у Михаила. Добавление SRW слов в предложение с ключом, как правило, увеличивает косинусную релевантность.

Второе, как бы не хотелось притянуть за уши теорию, о некоем «окне релевантности» в котором необходимо использовать SRW слова но это не так. Близость SRW слова к ключу не влияет на косинусную релевантность текста, ну или мне не удалось это заметить. Каюсь, поторопился с выводами на эфире у Шакина.

Третье, SRW слова влияют по разному, какие-то больше, какие-то меньше, причем степень влияния не всегда коррелирует если сравнивать в лоб cs(ключ, srw слово). Так например, стеклопакет – самое релевантное слово, оказало меньшее влияние чем уплотнитель, но, скорее всего это погрешность эксперимента.

Ну и совсем неожиданный результат!
Случайным образом выяснилось, что слова явно определяющие интент, например (купить, цена, стоимость, как, что, если, почему) в начале предложения, увеличивают косинусную релевантность пары слово/текст!

В данном эксперименте была использована модель textEmbedding от Яндекса. Хмм, а, что если взять и сделать то же самое для Google? Интересно 🤔 ?

BY SEO Python 2 Нейрона








Share with your friend now:
tgoop.com/seo_python_2neuron/73

View MORE
Open in Telegram


Telegram News

Date: |

Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members. Invite up to 200 users from your contacts to join your channel Earlier, crypto enthusiasts had created a self-described “meme app” dubbed “gm” app wherein users would greet each other with “gm” or “good morning” messages. However, in September 2021, the gm app was down after a hacker reportedly gained access to the user data. Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree."
from us


Telegram SEO Python 2 Нейрона
FROM American