Notice: file_put_contents(): Write of 5007 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 13199 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Соня и наука@sonyascience P.553
SONYASCIENCE Telegram 553
Сегодня (я моргнула, прошло пять дней) на экзамене слушала рассказ про квазикристаллы и поняла, что тянуть дальше некуда. Встречайте первый из серии задротских лонгридов.

Чтобы отправиться в увлекательное путешествие по дороге из желтого кирпича плиток Пенроуза, нам с вами нужно договориться об определениях. Попробую в формате блица, чтобы не заскучать:

Нас окружают разные вещества. Физика твердого тела изучает вещества (омг *муж заглядывает через плечо и спрашивает, что это у меня за отдельные малые группы*) твердые. Под этим обычно понимают кристаллы. Кристалл, пусть и происходит от латинского «лед», совсем не обязательно прозрачный и красивенький. Кристаллы состоят из трансляционно упорядоченных атомов: представьте как много-много шариков упорядоченно заполняют пространство. В этой модели предусмотрен дальний и ближний порядок. Это значит, что зная симметрию кристалла и то, как выглядит его микроскопический кусочек, можно достроить весь остальной кристалл.

Чтобы определить, что за кристалл вам попался, на него принято светить* рентгеновским излучением. В результате дифракции рентгеновских лучей на кристалле получается картина, из которой можно извлечь межплоскостное расстояние, симметрию, ориентацию и многое другое. Картинки, которые получаются на выходе, называют дифрактрограммами (дебае- или лауэграммы по названию методов).

Вместе с разговором о кристалле, сразу возникает вопрос о симметрии. Для простоты можно думать о том, какими одинаковыми фигурами можно заполнить плоскость, если фигуры можно только двигать (не поворачивать и не отражать). Так, мы поймем, какие симметрии допустимы на плоскости. Понятно, что бесконечную плоскость можно заполнить правильными треугольниками, прямоугольниками и шестиугольниками. Тогда говорят, что в кристаллах могут существовать оси второго, третьего, четвертого, шестого порядка (номер оси = 360/угол допустимого поворота).

Дальше в качестве простого упражнения обычно предлагается доказать, что оси пятого, например, порядка не существует. Чтобы это понять, можете порисовать пятиугольники (или посмотреть на картинку в комментариях).

Базу обсудили. Переходим к приколам. Первым приколистом был Иоганн Кеплер, большой любитель симметрий, гармоний, автор законов о движении небесных тел и просто философ. Так, Кеплер долго не мог выбрать подарок на новый год и подарил другу свое философско-математическое эссе о симметриях, которое родилось из наблюдений за снежинками (почему бывают только шестиконечные?). Позже, размышляя о запретных симметриях, Кеплер предложил фигуру с локальной симметрией пятого порядка (из звезд, пятиугольников, etc), такую, что ей можно замостить всю плоскость.

Предлагаю на сегодня остановиться и пойти смотреть на снежинки. В следующий раз продолжим с этого же места и поговорим о задаче замощения плоскости и нетривиальных математических разгадках.

Откликнитесь, если читаете этот тред, буду быстрее копить ману и писать продолжение.

*есть три типа людей: первые называют светом только излучение видимого диапазона, вторые — любое электромагнитное излучение. Третьи — нигилисты и спрашивают, можно ли считать излучение светом, если частота ноль? :)



tgoop.com/sonyascience/553
Create:
Last Update:

Сегодня (я моргнула, прошло пять дней) на экзамене слушала рассказ про квазикристаллы и поняла, что тянуть дальше некуда. Встречайте первый из серии задротских лонгридов.

Чтобы отправиться в увлекательное путешествие по дороге из желтого кирпича плиток Пенроуза, нам с вами нужно договориться об определениях. Попробую в формате блица, чтобы не заскучать:

Нас окружают разные вещества. Физика твердого тела изучает вещества (омг *муж заглядывает через плечо и спрашивает, что это у меня за отдельные малые группы*) твердые. Под этим обычно понимают кристаллы. Кристалл, пусть и происходит от латинского «лед», совсем не обязательно прозрачный и красивенький. Кристаллы состоят из трансляционно упорядоченных атомов: представьте как много-много шариков упорядоченно заполняют пространство. В этой модели предусмотрен дальний и ближний порядок. Это значит, что зная симметрию кристалла и то, как выглядит его микроскопический кусочек, можно достроить весь остальной кристалл.

Чтобы определить, что за кристалл вам попался, на него принято светить* рентгеновским излучением. В результате дифракции рентгеновских лучей на кристалле получается картина, из которой можно извлечь межплоскостное расстояние, симметрию, ориентацию и многое другое. Картинки, которые получаются на выходе, называют дифрактрограммами (дебае- или лауэграммы по названию методов).

Вместе с разговором о кристалле, сразу возникает вопрос о симметрии. Для простоты можно думать о том, какими одинаковыми фигурами можно заполнить плоскость, если фигуры можно только двигать (не поворачивать и не отражать). Так, мы поймем, какие симметрии допустимы на плоскости. Понятно, что бесконечную плоскость можно заполнить правильными треугольниками, прямоугольниками и шестиугольниками. Тогда говорят, что в кристаллах могут существовать оси второго, третьего, четвертого, шестого порядка (номер оси = 360/угол допустимого поворота).

Дальше в качестве простого упражнения обычно предлагается доказать, что оси пятого, например, порядка не существует. Чтобы это понять, можете порисовать пятиугольники (или посмотреть на картинку в комментариях).

Базу обсудили. Переходим к приколам. Первым приколистом был Иоганн Кеплер, большой любитель симметрий, гармоний, автор законов о движении небесных тел и просто философ. Так, Кеплер долго не мог выбрать подарок на новый год и подарил другу свое философско-математическое эссе о симметриях, которое родилось из наблюдений за снежинками (почему бывают только шестиконечные?). Позже, размышляя о запретных симметриях, Кеплер предложил фигуру с локальной симметрией пятого порядка (из звезд, пятиугольников, etc), такую, что ей можно замостить всю плоскость.

Предлагаю на сегодня остановиться и пойти смотреть на снежинки. В следующий раз продолжим с этого же места и поговорим о задаче замощения плоскости и нетривиальных математических разгадках.

Откликнитесь, если читаете этот тред, буду быстрее копить ману и писать продолжение.

*есть три типа людей: первые называют светом только излучение видимого диапазона, вторые — любое электромагнитное излучение. Третьи — нигилисты и спрашивают, можно ли считать излучение светом, если частота ноль? :)

BY Соня и наука




Share with your friend now:
tgoop.com/sonyascience/553

View MORE
Open in Telegram


Telegram News

Date: |

While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau. Image: Telegram. Find your optimal posting schedule and stick to it. The peak posting times include 8 am, 6 pm, and 8 pm on social media. Try to publish serious stuff in the morning and leave less demanding content later in the day.
from us


Telegram Соня и наука
FROM American