SQLHUB Telegram 1909
🔢 PGVector: векторный поиск прямо в PostgreSQL — гайд

Если ты работаешь с embedding'ами (OpenAI, HuggingFace, LLMs) и хочешь делать семантический поиск в SQL — тебе нужен pgvector. Это расширение позволяет сохранять и сравнивать векторы прямо внутри PostgreSQL.

📦 Установка PGVector (Linux)


git clone --branch v0.8.0 https://github.com/pgvector/pgvector.git
cd pgvector
make
sudo make install


Или просто:
• macOS: brew install pgvector
• Docker: pgvector/pgvector:pg17
• PostgreSQL 13+ (через APT/YUM)

🔌 Подключение расширения в базе


CREATE EXTENSION vector;


После этого ты можешь использовать новый тип данных vector.

🧱 Пример использования

Создаём таблицу:


CREATE TABLE items (
id bigserial PRIMARY KEY,
embedding vector(3)
);


Добавляем данные:


INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');


Поиск ближайшего вектора:


SELECT * FROM items
ORDER BY embedding <-> '[3,1,2]'
LIMIT 5;


🧠 Операторы сравнения

PGVector поддерживает несколько видов расстояний между векторами:

- <-> — L2 (евклидово расстояние)
- <#> — скалярное произведение
- <=> — косинусное расстояние
- <+> — Manhattan (L1)
- <~> — Хэммингово расстояние (для битовых векторов)
- <%> — Жаккар (для битовых векторов)

Также можно усреднять вектора:


SELECT AVG(embedding) FROM items;


🚀 Индексация для быстрого поиска

HNSW (лучшее качество):


CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);


Параметры можно настраивать:


SET hnsw.ef_search = 40;


#### IVFFlat (быстрее создаётся, но чуть менее точный):


CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100);
SET ivfflat.probes = 10;


🔍 Проверка версии и обновление


SELECT extversion FROM pg_extension WHERE extname='vector';
ALTER EXTENSION vector UPDATE;


📌 Особенности

- Работает с PostgreSQL 13+
- Поддержка до 2000 измерений
- Расширяемый синтаксис
- Можно использовать DISTINCT, JOIN, GROUP BY, ORDER BY и агрегации
- Подходит для RAG-пайплайнов, NLP и встраивания LLM-поиска в обычные SQL-приложения

🔗 Подробнее

💡 Храни embedding'и прямо в PostgreSQL — и делай семантический поиск без внешних векторных БД.
8👍3🔥3🥰1



tgoop.com/sqlhub/1909
Create:
Last Update:

🔢 PGVector: векторный поиск прямо в PostgreSQL — гайд

Если ты работаешь с embedding'ами (OpenAI, HuggingFace, LLMs) и хочешь делать семантический поиск в SQL — тебе нужен pgvector. Это расширение позволяет сохранять и сравнивать векторы прямо внутри PostgreSQL.

📦 Установка PGVector (Linux)


git clone --branch v0.8.0 https://github.com/pgvector/pgvector.git
cd pgvector
make
sudo make install


Или просто:
• macOS: brew install pgvector
• Docker: pgvector/pgvector:pg17
• PostgreSQL 13+ (через APT/YUM)

🔌 Подключение расширения в базе


CREATE EXTENSION vector;


После этого ты можешь использовать новый тип данных vector.

🧱 Пример использования

Создаём таблицу:


CREATE TABLE items (
id bigserial PRIMARY KEY,
embedding vector(3)
);


Добавляем данные:


INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');


Поиск ближайшего вектора:


SELECT * FROM items
ORDER BY embedding <-> '[3,1,2]'
LIMIT 5;


🧠 Операторы сравнения

PGVector поддерживает несколько видов расстояний между векторами:

- <-> — L2 (евклидово расстояние)
- <#> — скалярное произведение
- <=> — косинусное расстояние
- <+> — Manhattan (L1)
- <~> — Хэммингово расстояние (для битовых векторов)
- <%> — Жаккар (для битовых векторов)

Также можно усреднять вектора:


SELECT AVG(embedding) FROM items;


🚀 Индексация для быстрого поиска

HNSW (лучшее качество):


CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);


Параметры можно настраивать:


SET hnsw.ef_search = 40;


#### IVFFlat (быстрее создаётся, но чуть менее точный):


CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100);
SET ivfflat.probes = 10;


🔍 Проверка версии и обновление


SELECT extversion FROM pg_extension WHERE extname='vector';
ALTER EXTENSION vector UPDATE;


📌 Особенности

- Работает с PostgreSQL 13+
- Поддержка до 2000 измерений
- Расширяемый синтаксис
- Можно использовать DISTINCT, JOIN, GROUP BY, ORDER BY и агрегации
- Подходит для RAG-пайплайнов, NLP и встраивания LLM-поиска в обычные SQL-приложения

🔗 Подробнее

💡 Храни embedding'и прямо в PostgreSQL — и делай семантический поиск без внешних векторных БД.

BY Data Science. SQL hub


Share with your friend now:
tgoop.com/sqlhub/1909

View MORE
Open in Telegram


Telegram News

Date: |

As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” 3How to create a Telegram channel? Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation.
from us


Telegram Data Science. SQL hub
FROM American