STATS_FOR_SCIENCE Telegram 67
Делаем t-тесты или u-тесты в R сразу для многих колонок с помощью `tidyverse`-подхода

Бывают ситуации, когда измерили много количественных переменных для двух групп, например контрольной и с заболеванием, я встречала такие данные у медиков или как результаты масс-спектрометрии. Планируется сравнить все эти количественные переменные тестом Стьюдента или Манна-Уитни, но вручную прописывать 3 или больше раз t-тест кажется не очень хорошей идеей. Что можно сделать? Будем использовать следующий подход: сначала развернем таблицу в длинный формат, соберем в списки значения по каждой группе и количественной переменной, затем таблицу снова превратим в широкий формат, но уже в виде
переменная1 [список значений контрольной группы] [список значений экспериментальной группы]

И уже к этой таблице применим нужный тест один раз и получим список p-value для каждой количественной переменной! Прикрепляю пример кода, постаралась прокомментировать основные моменты, данные сгенерированы из стандартного нормального распределения с заданием seed, так что этот код должен воспроизвестись:

 r
library(dplyr)
library(tidyr)
set.seed(2)
df <- data.frame(lapply(rep(100,15), rnorm),
group = rep(c('control', 'treatment'), each = 50)) # генерируем данные
colnames(df)[1:15] <- paste0('marker', 1:15) # меняем имена колонок на более понятные
df %>%
select(where(is.numeric), group) %>% # это на случай, если в исходном датафрейме не только числовые переменные
pivot_longer(cols = -group, names_to = 'variable') %>% # преобразуем датафрейм в long-формат
group_by(group, variable) %>% # группируем по типу обработки и типу переменных
summarise(value = list(value)) %>% # собираем в списки
pivot_wider(id_cols = c(variable), names_from = group) %>% # разворачиваем обратно
group_by(variable) %>% # группируем для проведения стат теста
# запускаем тест Манна-Уитни, сохраняем u-значение и p-value
mutate(p_value = wilcox.test(unlist(control), unlist(treatment))$p.value,
u_value = wilcox.test(unlist(control), unlist(treatment))$statistic)
#> `summarise()` has grouped output by 'group'. You can override using the
#> `.groups` argument.
#> # A tibble: 15 × 5
#> # Groups: variable [15]
#> variable control treatment p_value u_value
#> <chr> <list> <list> <dbl> <dbl>
#> 1 marker1 <dbl [50]> <dbl [50]> 0.293 1403
#> 2 marker10 <dbl [50]> <dbl [50]> 0.0403 1548
#> 3 marker11 <dbl [50]> <dbl [50]> 0.269 1411
#> 4 marker12 <dbl [50]> <dbl [50]> 0.997 1249
#> 5 marker13 <dbl [50]> <dbl [50]> 0.323 1106
#> 6 marker14 <dbl [50]> <dbl [50]> 0.560 1335
#> 7 marker15 <dbl [50]> <dbl [50]> 0.667 1313
#> 8 marker2 <dbl [50]> <dbl [50]> 0.117 1478
#> 9 marker3 <dbl [50]> <dbl [50]> 0.931 1263
#> 10 marker4 <dbl [50]> <dbl [50]> 0.866 1225
#> 11 marker5 <dbl [50]> <dbl [50]> 0.791 1211
#> 12 marker6 <dbl [50]> <dbl [50]> 0.986 1247
#> 13 marker7 <dbl [50]> <dbl [50]> 0.920 1235
#> 14 marker8 <dbl [50]> <dbl [50]> 0.0169 1597
#> 15 marker9 <dbl [50]> <dbl [50]> 0.707 1195

Если понадобится сделать не тест Манна-Уитни, как в примере, а t-test, то надо просто поменять в последней команде wilcox.test() на t.test().
👍206



tgoop.com/stats_for_science/67
Create:
Last Update:

Делаем t-тесты или u-тесты в R сразу для многих колонок с помощью `tidyverse`-подхода

Бывают ситуации, когда измерили много количественных переменных для двух групп, например контрольной и с заболеванием, я встречала такие данные у медиков или как результаты масс-спектрометрии. Планируется сравнить все эти количественные переменные тестом Стьюдента или Манна-Уитни, но вручную прописывать 3 или больше раз t-тест кажется не очень хорошей идеей. Что можно сделать? Будем использовать следующий подход: сначала развернем таблицу в длинный формат, соберем в списки значения по каждой группе и количественной переменной, затем таблицу снова превратим в широкий формат, но уже в виде
переменная1 [список значений контрольной группы] [список значений экспериментальной группы]

И уже к этой таблице применим нужный тест один раз и получим список p-value для каждой количественной переменной! Прикрепляю пример кода, постаралась прокомментировать основные моменты, данные сгенерированы из стандартного нормального распределения с заданием seed, так что этот код должен воспроизвестись:

 r
library(dplyr)
library(tidyr)
set.seed(2)
df <- data.frame(lapply(rep(100,15), rnorm),
group = rep(c('control', 'treatment'), each = 50)) # генерируем данные
colnames(df)[1:15] <- paste0('marker', 1:15) # меняем имена колонок на более понятные
df %>%
select(where(is.numeric), group) %>% # это на случай, если в исходном датафрейме не только числовые переменные
pivot_longer(cols = -group, names_to = 'variable') %>% # преобразуем датафрейм в long-формат
group_by(group, variable) %>% # группируем по типу обработки и типу переменных
summarise(value = list(value)) %>% # собираем в списки
pivot_wider(id_cols = c(variable), names_from = group) %>% # разворачиваем обратно
group_by(variable) %>% # группируем для проведения стат теста
# запускаем тест Манна-Уитни, сохраняем u-значение и p-value
mutate(p_value = wilcox.test(unlist(control), unlist(treatment))$p.value,
u_value = wilcox.test(unlist(control), unlist(treatment))$statistic)
#> `summarise()` has grouped output by 'group'. You can override using the
#> `.groups` argument.
#> # A tibble: 15 × 5
#> # Groups: variable [15]
#> variable control treatment p_value u_value
#> <chr> <list> <list> <dbl> <dbl>
#> 1 marker1 <dbl [50]> <dbl [50]> 0.293 1403
#> 2 marker10 <dbl [50]> <dbl [50]> 0.0403 1548
#> 3 marker11 <dbl [50]> <dbl [50]> 0.269 1411
#> 4 marker12 <dbl [50]> <dbl [50]> 0.997 1249
#> 5 marker13 <dbl [50]> <dbl [50]> 0.323 1106
#> 6 marker14 <dbl [50]> <dbl [50]> 0.560 1335
#> 7 marker15 <dbl [50]> <dbl [50]> 0.667 1313
#> 8 marker2 <dbl [50]> <dbl [50]> 0.117 1478
#> 9 marker3 <dbl [50]> <dbl [50]> 0.931 1263
#> 10 marker4 <dbl [50]> <dbl [50]> 0.866 1225
#> 11 marker5 <dbl [50]> <dbl [50]> 0.791 1211
#> 12 marker6 <dbl [50]> <dbl [50]> 0.986 1247
#> 13 marker7 <dbl [50]> <dbl [50]> 0.920 1235
#> 14 marker8 <dbl [50]> <dbl [50]> 0.0169 1597
#> 15 marker9 <dbl [50]> <dbl [50]> 0.707 1195

Если понадобится сделать не тест Манна-Уитни, как в примере, а t-test, то надо просто поменять в последней команде wilcox.test() на t.test().

BY Статистика и R в науке и аналитике


Share with your friend now:
tgoop.com/stats_for_science/67

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? "Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn. To view your bio, click the Menu icon and select “View channel info.” Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS):
from us


Telegram Статистика и R в науке и аналитике
FROM American