ZASQL_PYTHON Telegram 242
Для чего нужен ML в аналитике?

Сразу же вопрос, можно ли решить продуктово задачу как-то без использования машинного обучения? Что решаете данной задачей? Да-да типичные вопросы "аналитика-душнилы", который постоянно хочет задать вопрос: "Зачем?" (и это правильно).

😩 Раз уж на то пошло, давайте опишу здесь сценарии, в которых ML может применяться (понятно, что их куда больше, рассмотрю те, которые вспомнил). Понятно, что аналитики бывают разные, рассмотрю с призмы продуктовой аналитики. Зачастую используются какие-то ML решения для исследований, а продакшн уже не наше)

😐 Задача классификации. Хотим предсказывать какую-то бинарную величину (или оценивать вероятность). Нам нужно оценить, например, отток пользователей, какие-то дополнительные исследования в эту сторону. Пример ноутбука Kaggle

👍 Временные ряды. Если у нас есть желание построить какой-то прогноз, например, внутренний KPI продаж, это можно сделать как на основе различных факторов, так и используя временные ряды. Туториал на Kaggle.

😤 Causal Inference aka причинно-следственные связи. Внедряем какую-то фичу, хотим честно замерить эффект на пользователей.❗️Про это могу рассказать в следующих постах, если наберется нормальное количество реакций❗️

😎 Матчинг. Поиск из базы наших пользователей тех людей, кто соответствует поставленной задачи. Например, те пользователи, которые имеют определенный паттерн, который нас устраивает и мы хотим найти похожих. Ноутбук Яндекса ❤️

😎 MMM (Marketing Mix Modeling). Это про то, когда нам нужно оценить различные маркетинговые каналы (но это больше к маркетинговой аналитике). Статьи на Хабр. Первая часть, вторая часть

🕺 Сегментация пользователей. Кластеризация какая-нибудь, есть пример тут с гайдом, как это можно сделать.
...
feaure importance ... и так далее.

Относительно недавно вышло видео с собесом на аналитика, где спрашивали базовые вопросы про линейную регрессию. Для того чтобы прочувствовать то, как это работает на данных, можно чекнуть.

😤 Все зависит от специфики команды, можно и динамическим ценообразоованием заняться, блин

👍 А в каких кейсах вы использовали ML? Если на этом посте наберется 150+ реакций, запилю какой-нибудь гайд с решением продуктовой задачи с помощью ML
Please open Telegram to view this post
VIEW IN TELEGRAM
🐳82👍25🔥2214🎄2



tgoop.com/zasql_python/242
Create:
Last Update:

Для чего нужен ML в аналитике?

Сразу же вопрос, можно ли решить продуктово задачу как-то без использования машинного обучения? Что решаете данной задачей? Да-да типичные вопросы "аналитика-душнилы", который постоянно хочет задать вопрос: "Зачем?" (и это правильно).

😩 Раз уж на то пошло, давайте опишу здесь сценарии, в которых ML может применяться (понятно, что их куда больше, рассмотрю те, которые вспомнил). Понятно, что аналитики бывают разные, рассмотрю с призмы продуктовой аналитики. Зачастую используются какие-то ML решения для исследований, а продакшн уже не наше)

😐 Задача классификации. Хотим предсказывать какую-то бинарную величину (или оценивать вероятность). Нам нужно оценить, например, отток пользователей, какие-то дополнительные исследования в эту сторону. Пример ноутбука Kaggle

👍 Временные ряды. Если у нас есть желание построить какой-то прогноз, например, внутренний KPI продаж, это можно сделать как на основе различных факторов, так и используя временные ряды. Туториал на Kaggle.

😤 Causal Inference aka причинно-следственные связи. Внедряем какую-то фичу, хотим честно замерить эффект на пользователей.❗️Про это могу рассказать в следующих постах, если наберется нормальное количество реакций❗️

😎 Матчинг. Поиск из базы наших пользователей тех людей, кто соответствует поставленной задачи. Например, те пользователи, которые имеют определенный паттерн, который нас устраивает и мы хотим найти похожих. Ноутбук Яндекса ❤️

😎 MMM (Marketing Mix Modeling). Это про то, когда нам нужно оценить различные маркетинговые каналы (но это больше к маркетинговой аналитике). Статьи на Хабр. Первая часть, вторая часть

🕺 Сегментация пользователей. Кластеризация какая-нибудь, есть пример тут с гайдом, как это можно сделать.
...
feaure importance ... и так далее.

Относительно недавно вышло видео с собесом на аналитика, где спрашивали базовые вопросы про линейную регрессию. Для того чтобы прочувствовать то, как это работает на данных, можно чекнуть.

😤 Все зависит от специфики команды, можно и динамическим ценообразоованием заняться, блин

👍 А в каких кейсах вы использовали ML? Если на этом посте наберется 150+ реакций, запилю какой-нибудь гайд с решением продуктовой задачи с помощью ML

BY Заскуль питона (Data Science)


Share with your friend now:
tgoop.com/zasql_python/242

View MORE
Open in Telegram


Telegram News

Date: |

To edit your name or bio, click the Menu icon and select “Manage Channel.” A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more. How to Create a Private or Public Channel on Telegram? How to build a private or public channel on Telegram? Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.”
from us


Telegram Заскуль питона (Data Science)
FROM American