ZASQL_PYTHON Telegram 324
Типы задач продуктового аналитика

за время работы, общения с коллегами, друзьями выявил для себя основные таски, которые приходится выполнять продуктовому аналитику каждую неделю

1. создание дашбордов. Как ты видишь срез продукта, как донесешь другим людям полную картину, что происходит в бизнесе. Сделать так, чтобы это очень легко считывалось - искусство.

2. доработка / фикс / поддержка дашбордов. Если аналитик это заметил (с помощью алертинга, например, - класс), если бизнес - не особо. Возникают вопросы к доверию данных, актуализации отчетности, люди могут меньше обращаться к ней из-за наличия таких косяков.

3. работа с архитектурой данных. Здесь речь и про разработку витрин (не только для отчетности), но и для решения других задач. Сюда можно включить и разметку для пользовательского приложения (в зависимости от внердяемой фичи) и занесения метрик в абшницу и feature store для ML расчетов (вариаций куча).

4. оценка и приоритизация. Планы, приоритизация задач (в рамках скоринга задач, в каком порядке должны подступаться продуктово к решению задач), трекшн (как должен двигаться бизнес в определенном срезе), что может быть в будущем. К этому также может относиться расчет юнит-экономики, когда мы ищем определенные точки роста в бизнесе (новые идеи).

5*. прогнозирование. Тут речь про построение планов на основе различных методов прогнозирования (временные ряды), не грубая прикидка, а хороший прогноз (etna, arima, sarimax, prophet etc)

6. выгрузки / адхоки. Включает в себя разные вопросы, которые могут решаться за 1 этап (просто выгрузка из БД без каких-то фокусов). Сегменты пользователей для рассылки / коммуникации, ответ на вопрос, одна чиселка в ответе, передать инфу другим аналитикам / командам и др.

7. исследования. Здесь обычно нет какой-то структуры, может быть по-разному. Исследования, когда можно взять готовые данные и ответить на вопрос - одно. А когда нужно их комбинировать между собой, ставить перед собой задачу декомпозиции и потихоньку приходить к ответу - другое. Пример: понять, почему в бизнес-юните такая маленькая конверсия на данном этапе?

8. эксперименты. Дизайн, запуск, валидация, мониторинг, завершение. Здесь можно посчитать еще и долгосрочный эффект*, либо, если эксперимент неудачный - сделать перезапуск

9. моделирование / оптимизация. Машинное обучение, оптимизация бизнес-процессов, автоматизация (в том числе и для настройки ETL, отдельным пунктом в дашборд не выводил, так как само собой разумеющееся). Может быть и аплифт-моделирование (ближе к маркетинговой аналитике) и различные приколы с эмбеддингами (в аналитике поиска).

Что-то забыл? Делитесь в комментариях! Какую задачу вам приходится решать чаще всего?
3268👍71



tgoop.com/zasql_python/324
Create:
Last Update:

Типы задач продуктового аналитика

за время работы, общения с коллегами, друзьями выявил для себя основные таски, которые приходится выполнять продуктовому аналитику каждую неделю

1. создание дашбордов. Как ты видишь срез продукта, как донесешь другим людям полную картину, что происходит в бизнесе. Сделать так, чтобы это очень легко считывалось - искусство.

2. доработка / фикс / поддержка дашбордов. Если аналитик это заметил (с помощью алертинга, например, - класс), если бизнес - не особо. Возникают вопросы к доверию данных, актуализации отчетности, люди могут меньше обращаться к ней из-за наличия таких косяков.

3. работа с архитектурой данных. Здесь речь и про разработку витрин (не только для отчетности), но и для решения других задач. Сюда можно включить и разметку для пользовательского приложения (в зависимости от внердяемой фичи) и занесения метрик в абшницу и feature store для ML расчетов (вариаций куча).

4. оценка и приоритизация. Планы, приоритизация задач (в рамках скоринга задач, в каком порядке должны подступаться продуктово к решению задач), трекшн (как должен двигаться бизнес в определенном срезе), что может быть в будущем. К этому также может относиться расчет юнит-экономики, когда мы ищем определенные точки роста в бизнесе (новые идеи).

5*. прогнозирование. Тут речь про построение планов на основе различных методов прогнозирования (временные ряды), не грубая прикидка, а хороший прогноз (etna, arima, sarimax, prophet etc)

6. выгрузки / адхоки. Включает в себя разные вопросы, которые могут решаться за 1 этап (просто выгрузка из БД без каких-то фокусов). Сегменты пользователей для рассылки / коммуникации, ответ на вопрос, одна чиселка в ответе, передать инфу другим аналитикам / командам и др.

7. исследования. Здесь обычно нет какой-то структуры, может быть по-разному. Исследования, когда можно взять готовые данные и ответить на вопрос - одно. А когда нужно их комбинировать между собой, ставить перед собой задачу декомпозиции и потихоньку приходить к ответу - другое. Пример: понять, почему в бизнес-юните такая маленькая конверсия на данном этапе?

8. эксперименты. Дизайн, запуск, валидация, мониторинг, завершение. Здесь можно посчитать еще и долгосрочный эффект*, либо, если эксперимент неудачный - сделать перезапуск

9. моделирование / оптимизация. Машинное обучение, оптимизация бизнес-процессов, автоматизация (в том числе и для настройки ETL, отдельным пунктом в дашборд не выводил, так как само собой разумеющееся). Может быть и аплифт-моделирование (ближе к маркетинговой аналитике) и различные приколы с эмбеддингами (в аналитике поиска).

Что-то забыл? Делитесь в комментариях! Какую задачу вам приходится решать чаще всего?

BY Заскуль питона (Data Science)


Share with your friend now:
tgoop.com/zasql_python/324

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? Your posting frequency depends on the topic of your channel. If you have a news channel, it’s OK to publish new content every day (or even every hour). For other industries, stick with 2-3 large posts a week. A Hong Kong protester with a petrol bomb. File photo: Dylan Hollingsworth/HKFP. With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings. To edit your name or bio, click the Menu icon and select “Manage Channel.”
from us


Telegram Заскуль питона (Data Science)
FROM American