ZASQL_PYTHON Telegram 325
Bayessian vs Frequient A/B testing [презентация]

Видео на Youtube: Александр Сахнов — Почему вам не стоит использовать байесовское A/B-тестирование

Нашел вначале шикарную презентацию от X5 по сравнению байесовского и частотного подхода к применению A/B тестов, потом нашел само видео)

Есть код на Python, можно сравнить методы на данных и посмотреть, как использовать.

Опровергаются различные мифы по поводу байесовского тестирования (про Peeking Problem, большую чувствительность, множественное тестирование)

В начале идет описание частотного A/B тестирования и пайплайн проведения:

1. Фиксирование допустимых вероятностей ошибок первого и второго рода
2. Фиксирование ожидаемого результата
3. Оцениваем по истории дисперсии
4. Оцениваем необходимый размер групп
5. Проводим эксперимент
6. Собираем данные и вычисляем p-value
7. Оцениваем результат

Говорится о сложности интерпретации p-value. Вводится статистика, у которого какое-то предельное распределение. По реализации выборки мы считаем реализацию статистики и смотрим куда попала. Про это я писал у себя в посте. Бизнесу нужно принять бинарное решение (внедряем / не внедряем).

Затем описывается пайплайн байесовского A/B тестирования:

1. Определение априорных распределений (для неизвестных для нас параметров). Далее мы переходим к апостериорному распределению с помощью правдоподобий и теоремы Байеса
2. Определение размера групп. Размер групп можем взять из частотного метода
3. Проведение эксперимента
4. Собираем данные и что-то вычисляем
5. Оцениваем результат

Частотный подход: Какая вероятность получить такое или более экстремальное значение статистики при верности H0?
Байесовский подход: Какая вероятность, что среднее уменьшилось / увеличилось по совместному апостериорному распределению?

Далее оцениваются ошибки первого и второго рода в частотном и байесовском методе. Мы можем задавать априорное распределение через uninformative prior, тогда оба метода показывают одинаковые результаты в симуляциях. Использование дополнительных знаний через prior не позволило на симуляциях контролировать ошибки первого и второго рода.

В частотном A/B-тесте у всех одни и те же результаты, но в Байесе все зависит от априорных знаний. Если два аналитика зададут разные априоры, они могут получить разные выводы по одному и тому же тесту! Представьте, что в A/B платформе такое внедряется — один продакт видит значимый эффект, а другой — нет. Как принимать решения?

Байесовские методы позволяют решать различные задачи. Например, многорорукие бандиты, EM-алгоритмы и многое другое.

🐳 Наберется 100 реакций, в следующем посте буду писать про байесовское тестирование более подробно

А вы используете байесовские методы? Если да, то какие? Пишите в комментариях.
1🐳69259



tgoop.com/zasql_python/325
Create:
Last Update:

Bayessian vs Frequient A/B testing [презентация]

Видео на Youtube: Александр Сахнов — Почему вам не стоит использовать байесовское A/B-тестирование

Нашел вначале шикарную презентацию от X5 по сравнению байесовского и частотного подхода к применению A/B тестов, потом нашел само видео)

Есть код на Python, можно сравнить методы на данных и посмотреть, как использовать.

Опровергаются различные мифы по поводу байесовского тестирования (про Peeking Problem, большую чувствительность, множественное тестирование)

В начале идет описание частотного A/B тестирования и пайплайн проведения:

1. Фиксирование допустимых вероятностей ошибок первого и второго рода
2. Фиксирование ожидаемого результата
3. Оцениваем по истории дисперсии
4. Оцениваем необходимый размер групп
5. Проводим эксперимент
6. Собираем данные и вычисляем p-value
7. Оцениваем результат

Говорится о сложности интерпретации p-value. Вводится статистика, у которого какое-то предельное распределение. По реализации выборки мы считаем реализацию статистики и смотрим куда попала. Про это я писал у себя в посте. Бизнесу нужно принять бинарное решение (внедряем / не внедряем).

Затем описывается пайплайн байесовского A/B тестирования:

1. Определение априорных распределений (для неизвестных для нас параметров). Далее мы переходим к апостериорному распределению с помощью правдоподобий и теоремы Байеса
2. Определение размера групп. Размер групп можем взять из частотного метода
3. Проведение эксперимента
4. Собираем данные и что-то вычисляем
5. Оцениваем результат

Частотный подход: Какая вероятность получить такое или более экстремальное значение статистики при верности H0?
Байесовский подход: Какая вероятность, что среднее уменьшилось / увеличилось по совместному апостериорному распределению?

Далее оцениваются ошибки первого и второго рода в частотном и байесовском методе. Мы можем задавать априорное распределение через uninformative prior, тогда оба метода показывают одинаковые результаты в симуляциях. Использование дополнительных знаний через prior не позволило на симуляциях контролировать ошибки первого и второго рода.

В частотном A/B-тесте у всех одни и те же результаты, но в Байесе все зависит от априорных знаний. Если два аналитика зададут разные априоры, они могут получить разные выводы по одному и тому же тесту! Представьте, что в A/B платформе такое внедряется — один продакт видит значимый эффект, а другой — нет. Как принимать решения?

Байесовские методы позволяют решать различные задачи. Например, многорорукие бандиты, EM-алгоритмы и многое другое.

🐳 Наберется 100 реакций, в следующем посте буду писать про байесовское тестирование более подробно

А вы используете байесовские методы? Если да, то какие? Пишите в комментариях.

BY Заскуль питона (Data Science)




Share with your friend now:
tgoop.com/zasql_python/325

View MORE
Open in Telegram


Telegram News

Date: |

As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.! When choosing the right name for your Telegram channel, use the language of your target audience. The name must sum up the essence of your channel in 1-3 words. If you’re planning to expand your Telegram audience, it makes sense to incorporate keywords into your name. A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more. Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members.
from us


Telegram Заскуль питона (Data Science)
FROM American