ZOOLOGYKHU Telegram 2088
⌛️ دهه‌های ۱۹۵۰ تا ۱۹۷۰: پایه‌گذاری در بیوفیزیک و نظریه‌های عصبی

پایه‌های این حوزه با مدل هاچکین-هاکسلی گذاشته شد، مدلی که پتانسیل‌های عملیاتی نورونی را با استفاده از جریان‌های یونی کمی‌سازی کرد. مدل ساده نورونی McCulloch-Pitts نیز از جمله پیشرفت‌های مهم اولیه بود که عملیات منطقی را شبیه‌سازی کرده و به‌عنوان مبنای مفهومی اولیه برای شبکه‌های عصبی مصنوعی عمل کرد.

⌛️دهه‌های ۱۹۸۰ تا ۲۰۰۰: گسترش به شبکه‌های عصبی پیچیده

با افزایش قدرت محاسباتی، تمرکز این حوزه به مطالعه شبکه‌های بزرگ‌تر نورونی و پلاستیسیته سیناپسی معطوف شد. در این دوره، مدل‌های نظری بیشتری نیز معرفی شدند، مانند شبکه‌های جاذب (attractor networks) برای مطالعه حافظه و یادگیری تداعی‌گر. اصول یادگیری هبی به‌طور رسمی مطرح شدند و مدل‌هایی برای بررسی پلاستیسیته عصبی توسعه یافتند که مکانیسم‌های یادگیری را در سطوح سیناپسی و شبکه‌ای توضیح می‌دادند.

⌛️دهه ۲۰۰۰ تاکنون: ادغام داده‌های عظیم و یادگیری ماشین

ظهور فناوری‌هایی مانند fMRI ،EEG و تصویربرداری نوری، مجموعه داده‌های عظیمی را تولید کرد که نیاز به تکنیک‌های تحلیل نوینی داشتند. استفاده از یادگیری ماشین به پردازش و تفسیر این داده‌ها کمک کرد و به کشف‌هایی در ارتباطات و عملکرد مغز منجر شد. پیشرفت‌های شبکه‌های عصبی مصنوعی، به‌ویژه deep learning، نه‌تنها بر علوم اعصاب محاسباتی بلکه بر AI نیز تأثیر گذاشته است.

💎 روندهای مدرن و آینده علوم اعصاب محاسباتی

در حال حاضر، این حوزه به سمت مدل‌های چندمقیاسی حرکت می‌کند که داده‌ها را در سطوح مولکولی، سلولی، شبکه‌ای و سیستمی ادغام می‌کند. مسیرهای آینده شامل بهبود مدل‌های تمام‌مغزی، بررسی تفاوت‌های فردی، و کاربرد بینش‌های علوم اعصاب محاسباتی در مهندسی عصبی، Brain-Computer Interface، و درمان‌های بالینی است.


💡 مسیرهای آموزشی برای دانشجویان و پژوهشگران تازه‌کار در علوم اعصاب محاسباتی

برای دانشجویان علاقه‌مند به این حوزه، آموزش بین‌رشته‌ای ضروری است. داشتن پایه‌ای قوی در علوم اعصاب، ریاضیات، برنامه‌نویسی (به‌خصوص پایتون و متلب) و آنالیز داده‌ها ضروری است. بسیاری از برنامه‌های کارشناسی اکنون دوره‌های ویژه‌ای در علوم اعصاب محاسباتی ارائه می‌دهند که شامل مدل‌سازی عصبی، علوم داده، و یادگیری ماشین می‌شود.

🔬 تجربه عملی و مشارکت در پروژه‌های تحقیقاتی

شرکت در پروژه‌های تحقیقاتی، اغلب از طریق برنامه‌های تابستانی یا آزمایشگاه‌های تحقیقاتی، برای کسب تجربه عملی اهمیت دارد. آشنایی با ابزارهای کلیدی مانند NEST، Brain2، PyTorch یا TensorFlow می‌تواند مهارت‌های عملی دانشجویان را تقویت کند. علاقه‌مندان می‌توانند با سرچ در یوتیوب، دوره و کورس‌های موردنیاز خود را رایگان جست‌وجو کنند.

💰 فرصت‌ها در صنعت و خارج از آکادمی

فراتر از دانشگاه، علوم اعصاب محاسباتی در حوزه‌هایی مانند زیست‌فناوری، داروسازی، و تحقیقات هوش مصنوعی کاربرد دارد. این فرصت‌ها به دانشجویان امکان می‌دهد تا از مهارت‌های خود در پژوهش‌های کاربردی یا توسعه فناوری‌های پیشرفته استفاده کنند.

کورس MIT علوم اعصاب محاسباتی

🧠کمیته نوروساینس🧠

🗂 گردآورنده: آرمان دیناروند


📱 Telegram
📱 Instagram



tgoop.com/zoologykhu/2088
Create:
Last Update:

⌛️ دهه‌های ۱۹۵۰ تا ۱۹۷۰: پایه‌گذاری در بیوفیزیک و نظریه‌های عصبی

پایه‌های این حوزه با مدل هاچکین-هاکسلی گذاشته شد، مدلی که پتانسیل‌های عملیاتی نورونی را با استفاده از جریان‌های یونی کمی‌سازی کرد. مدل ساده نورونی McCulloch-Pitts نیز از جمله پیشرفت‌های مهم اولیه بود که عملیات منطقی را شبیه‌سازی کرده و به‌عنوان مبنای مفهومی اولیه برای شبکه‌های عصبی مصنوعی عمل کرد.

⌛️دهه‌های ۱۹۸۰ تا ۲۰۰۰: گسترش به شبکه‌های عصبی پیچیده

با افزایش قدرت محاسباتی، تمرکز این حوزه به مطالعه شبکه‌های بزرگ‌تر نورونی و پلاستیسیته سیناپسی معطوف شد. در این دوره، مدل‌های نظری بیشتری نیز معرفی شدند، مانند شبکه‌های جاذب (attractor networks) برای مطالعه حافظه و یادگیری تداعی‌گر. اصول یادگیری هبی به‌طور رسمی مطرح شدند و مدل‌هایی برای بررسی پلاستیسیته عصبی توسعه یافتند که مکانیسم‌های یادگیری را در سطوح سیناپسی و شبکه‌ای توضیح می‌دادند.

⌛️دهه ۲۰۰۰ تاکنون: ادغام داده‌های عظیم و یادگیری ماشین

ظهور فناوری‌هایی مانند fMRI ،EEG و تصویربرداری نوری، مجموعه داده‌های عظیمی را تولید کرد که نیاز به تکنیک‌های تحلیل نوینی داشتند. استفاده از یادگیری ماشین به پردازش و تفسیر این داده‌ها کمک کرد و به کشف‌هایی در ارتباطات و عملکرد مغز منجر شد. پیشرفت‌های شبکه‌های عصبی مصنوعی، به‌ویژه deep learning، نه‌تنها بر علوم اعصاب محاسباتی بلکه بر AI نیز تأثیر گذاشته است.

💎 روندهای مدرن و آینده علوم اعصاب محاسباتی

در حال حاضر، این حوزه به سمت مدل‌های چندمقیاسی حرکت می‌کند که داده‌ها را در سطوح مولکولی، سلولی، شبکه‌ای و سیستمی ادغام می‌کند. مسیرهای آینده شامل بهبود مدل‌های تمام‌مغزی، بررسی تفاوت‌های فردی، و کاربرد بینش‌های علوم اعصاب محاسباتی در مهندسی عصبی، Brain-Computer Interface، و درمان‌های بالینی است.


💡 مسیرهای آموزشی برای دانشجویان و پژوهشگران تازه‌کار در علوم اعصاب محاسباتی

برای دانشجویان علاقه‌مند به این حوزه، آموزش بین‌رشته‌ای ضروری است. داشتن پایه‌ای قوی در علوم اعصاب، ریاضیات، برنامه‌نویسی (به‌خصوص پایتون و متلب) و آنالیز داده‌ها ضروری است. بسیاری از برنامه‌های کارشناسی اکنون دوره‌های ویژه‌ای در علوم اعصاب محاسباتی ارائه می‌دهند که شامل مدل‌سازی عصبی، علوم داده، و یادگیری ماشین می‌شود.

🔬 تجربه عملی و مشارکت در پروژه‌های تحقیقاتی

شرکت در پروژه‌های تحقیقاتی، اغلب از طریق برنامه‌های تابستانی یا آزمایشگاه‌های تحقیقاتی، برای کسب تجربه عملی اهمیت دارد. آشنایی با ابزارهای کلیدی مانند NEST، Brain2، PyTorch یا TensorFlow می‌تواند مهارت‌های عملی دانشجویان را تقویت کند. علاقه‌مندان می‌توانند با سرچ در یوتیوب، دوره و کورس‌های موردنیاز خود را رایگان جست‌وجو کنند.

💰 فرصت‌ها در صنعت و خارج از آکادمی

فراتر از دانشگاه، علوم اعصاب محاسباتی در حوزه‌هایی مانند زیست‌فناوری، داروسازی، و تحقیقات هوش مصنوعی کاربرد دارد. این فرصت‌ها به دانشجویان امکان می‌دهد تا از مهارت‌های خود در پژوهش‌های کاربردی یا توسعه فناوری‌های پیشرفته استفاده کنند.

کورس MIT علوم اعصاب محاسباتی

🧠کمیته نوروساینس🧠

🗂 گردآورنده: آرمان دیناروند


📱 Telegram
📱 Instagram

BY انجمن علمی-دانشجویی علوم جانوری


Share with your friend now:
tgoop.com/zoologykhu/2088

View MORE
Open in Telegram


Telegram News

Date: |

Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. Concise Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel.
from us


Telegram انجمن علمی-دانشجویی علوم جانوری
FROM American