DSPROGLIB Telegram 6863
🔥 Out-of-Memory ошибки? Пора включать Multi-GPU!

Когда одной видеокарты уже не хватает — мульти-GPU операции превращают разрозненные GPU в единую вычислительную машину:
— Масштабное обучение без ограничений
— Резкое сокращение времени тренировки
— Возможность запускать модели, которые раньше были «слишком большими»

🔹 Что такое Multi-GPU операции
Это фундамент распределенного обучения: модель тренируется сразу на нескольких GPU.

Есть два основных подхода:
— Data Parallelism → данные делятся между GPU, обновления синхронизируются
— Model Parallelism → модель «разрезается» и распределяется между картами

Инструменты:
— PyTorch Distributed — стандарт для мульти-GPU тренинга
— nbdistributed — позволяет делать всё прямо в Jupyter

Ключевые операции (то, как GPU общаются между собой):
— Send → отправка тензора GPU → GPU
—Scatter → разбивка тензора на части и рассылка
— Broadcast → копия тензора на все устройства
— Gather → сбор тензоров в один
— Reduce → сбор + функция → результат на одной GPU
— All-Reduce → то же самое, но результат у всех

⚡️ Multi-GPU — это не только скорость. Это доступ к моделям, которые раньше были просто невозможны.

🐸 Библиотека дата-сайентиста

#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍2



tgoop.com/dsproglib/6863
Create:
Last Update:

🔥 Out-of-Memory ошибки? Пора включать Multi-GPU!

Когда одной видеокарты уже не хватает — мульти-GPU операции превращают разрозненные GPU в единую вычислительную машину:
— Масштабное обучение без ограничений
— Резкое сокращение времени тренировки
— Возможность запускать модели, которые раньше были «слишком большими»

🔹 Что такое Multi-GPU операции
Это фундамент распределенного обучения: модель тренируется сразу на нескольких GPU.

Есть два основных подхода:
— Data Parallelism → данные делятся между GPU, обновления синхронизируются
— Model Parallelism → модель «разрезается» и распределяется между картами

Инструменты:
— PyTorch Distributed — стандарт для мульти-GPU тренинга
— nbdistributed — позволяет делать всё прямо в Jupyter

Ключевые операции (то, как GPU общаются между собой):
— Send → отправка тензора GPU → GPU
—Scatter → разбивка тензора на части и рассылка
— Broadcast → копия тензора на все устройства
— Gather → сбор тензоров в один
— Reduce → сбор + функция → результат на одной GPU
— All-Reduce → то же самое, но результат у всех

⚡️ Multi-GPU — это не только скорость. Это доступ к моделям, которые раньше были просто невозможны.

🐸 Библиотека дата-сайентиста

#буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tgoop.com/dsproglib/6863

View MORE
Open in Telegram


Telegram News

Date: |

In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. Content is editable within two days of publishing On June 7, Perekopsky met with Brazilian President Jair Bolsonaro, an avid user of the platform. According to the firm's VP, the main subject of the meeting was "freedom of expression." Telegram Channels requirements & features There have been several contributions to the group with members posting voice notes of screaming, yelling, groaning, and wailing in different rhythms and pitches. Calling out the “degenerate” community or the crypto obsessives that engage in high-risk trading, Co-founder of NFT renting protocol Rentable World emiliano.eth shared this group on his Twitter. He wrote: “hey degen, are you stressed? Just let it out all out. Voice only tg channel for screaming”.
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American