Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/energytransition4/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
Технологии энергоперехода@energytransition4 P.123
ENERGYTRANSITION4 Telegram 123
Отечественная технология захоронения СО2 в геологических пластах

На страницах этого канала мы много писали о развитии технологии CCS в мире в целом. Представим теперь статус разработки в РФ. До кризиса 2022 г. на волне интереса к декарбонизации был запланирован ряд пилотных проектов, в которых улавливание СО2 из дымовых газов предлагалось сделать с помощью установки аминовой очистки от одного из международных поставщиков, а закачку СО2 в пласт — силами отечественных нефтегазовых компаний, которые лучше других знают недра и имеют компетенции в геологии пласта, бурении и заканчивании нагнетательных скважин. После ввода санкций наземную часть планируется делать с помощью отечественной технологии, появились инициативы по импортозамещению.

Роль Сколтеха в этом процессе — моделирование и лабораторные эксперименты по подземной части: комплексный анализ емкости, приемистости [скорость закачки СО2 в пласт в млн тонн в год] и герметичности [геомеханические риски утечки] подземного резервуара. На иллюстрации представлено интегральное видение дизайна закачки СО2 в пласт. Гидродинамическое моделирование проводится в партнерстве с НИИ Механики МГУ (проф. А.А.Афанасьев, создатель уникального отечественного 3D композиционного симулятора MUFITS). Оценка рисков утечки — силами нашей научной группы. Технологический партнер ПАО Газпром нефть. Активно прорабатываются несколько пилотных проектов в различных регионах РФ, один из них в Оренбургской области. Целевые пласты для захоронения СО2 — истощенные газовые коллектора или сеноманский водный горизонт. Ниже приводим ссылки на уже опубликованные работы по этому проекту:

1. Гидродинамика приемистости пласта: Afanasyev, A., Penigin, A., Dymochkina, M., Vedeneeva, E., Grechko, S., Tsvetkova, Y., ... & Osiptsov, A. (2023). Reservoir simulation of the CO2 storage potential for the depositional environments of West Siberia. Gas Science and Engineering, 114, 204980.

2. Геомеханические риски утечки СО2: Kanin, E., Garagash, I., Boronin, S., Zhigulskiy, S., Penigin, A., Afanasyev, A., ... & Osiptsov, A. (2024). Geomechanical risk assessment for CO2 storage in deep saline aquifers. Journal of Rock Mechanics and Geotechnical Engineering.

Как мы писали выше, без вмешательства в основной технологический процесс лишь CCS позволяет снизить углеродный след продукции путем улавливания СО2 из дымовых газов у источника. Спрос на эту технологию для декарбонизации тяжелой промышленности на горизонте до 2030 г будет только возрастать, т.к. даже при поставках, например, металлопроката из РФ в КНР конечные потребители в ЕС запрашивают информацию об углеродном следе по всей цепочке. Проект по созданию отечественной технологии CCS после апробации в полях получит потенциал экспорта в странах БРИКС+.

Технологии энергоперехода.



tgoop.com/energytransition4/123
Create:
Last Update:

Отечественная технология захоронения СО2 в геологических пластах

На страницах этого канала мы много писали о развитии технологии CCS в мире в целом. Представим теперь статус разработки в РФ. До кризиса 2022 г. на волне интереса к декарбонизации был запланирован ряд пилотных проектов, в которых улавливание СО2 из дымовых газов предлагалось сделать с помощью установки аминовой очистки от одного из международных поставщиков, а закачку СО2 в пласт — силами отечественных нефтегазовых компаний, которые лучше других знают недра и имеют компетенции в геологии пласта, бурении и заканчивании нагнетательных скважин. После ввода санкций наземную часть планируется делать с помощью отечественной технологии, появились инициативы по импортозамещению.

Роль Сколтеха в этом процессе — моделирование и лабораторные эксперименты по подземной части: комплексный анализ емкости, приемистости [скорость закачки СО2 в пласт в млн тонн в год] и герметичности [геомеханические риски утечки] подземного резервуара. На иллюстрации представлено интегральное видение дизайна закачки СО2 в пласт. Гидродинамическое моделирование проводится в партнерстве с НИИ Механики МГУ (проф. А.А.Афанасьев, создатель уникального отечественного 3D композиционного симулятора MUFITS). Оценка рисков утечки — силами нашей научной группы. Технологический партнер ПАО Газпром нефть. Активно прорабатываются несколько пилотных проектов в различных регионах РФ, один из них в Оренбургской области. Целевые пласты для захоронения СО2 — истощенные газовые коллектора или сеноманский водный горизонт. Ниже приводим ссылки на уже опубликованные работы по этому проекту:

1. Гидродинамика приемистости пласта: Afanasyev, A., Penigin, A., Dymochkina, M., Vedeneeva, E., Grechko, S., Tsvetkova, Y., ... & Osiptsov, A. (2023). Reservoir simulation of the CO2 storage potential for the depositional environments of West Siberia. Gas Science and Engineering, 114, 204980.

2. Геомеханические риски утечки СО2: Kanin, E., Garagash, I., Boronin, S., Zhigulskiy, S., Penigin, A., Afanasyev, A., ... & Osiptsov, A. (2024). Geomechanical risk assessment for CO2 storage in deep saline aquifers. Journal of Rock Mechanics and Geotechnical Engineering.

Как мы писали выше, без вмешательства в основной технологический процесс лишь CCS позволяет снизить углеродный след продукции путем улавливания СО2 из дымовых газов у источника. Спрос на эту технологию для декарбонизации тяжелой промышленности на горизонте до 2030 г будет только возрастать, т.к. даже при поставках, например, металлопроката из РФ в КНР конечные потребители в ЕС запрашивают информацию об углеродном следе по всей цепочке. Проект по созданию отечественной технологии CCS после апробации в полях получит потенциал экспорта в странах БРИКС+.

Технологии энергоперехода.

BY Технологии энергоперехода




Share with your friend now:
tgoop.com/energytransition4/123

View MORE
Open in Telegram


Telegram News

Date: |

The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019. On Tuesday, some local media outlets included Sing Tao Daily cited sources as saying the Hong Kong government was considering restricting access to Telegram. Privacy Commissioner for Personal Data Ada Chung told to the Legislative Council on Monday that government officials, police and lawmakers remain the targets of “doxxing” despite a privacy law amendment last year that criminalised the malicious disclosure of personal information. In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image.
from us


Telegram Технологии энергоперехода
FROM American