Нейросети могут взять диплом олимпиады третьего уровня. Этот момент наступил.
Сегодня я решил устроить для вас необычный разбор прошедшего закла олимпиады БИБН (задачи можно посмотреть вот тут), камрады: все эти задачи я дал решить GPT чату, версии О1 (мне сказали, что это самый продвинутый вариант, который есть на сегодняшний день, подписка стоит 200$ в месяц). На скриншотах представлено решение геометрической задачи (идет под номером 2), разбор всех остальных задач можно найти в комментариях под постом.
Отдельно хочу прокомментировать каждую задачку:
1) Решение чистое, О1 даже догадался, в этой задаче я даже не сомневался
2) Да, решение глиняное, да, эту задачу можно решить за 30 секунд, если нарисовать хороший рисунок (О1 думал очень долго, порядка 3 минут), но решение правильное! На самом деле, в плане геометрии я сомневался в его возможностях больше всего
3) Решение чистое, один момент заключается в том, что я пропустил слово "ровно 2 корня", когда записывал условие, но я думаю, что вы можете поверить в то, что О1 может сослаться на то, что производная f(x) имеет один корень и поэтому корней не более, чем два. Доказательство того, что модуль отрицательного корня больше тоже чистое
4) В общем все хорошо, но можно придраться к пункту с отрицательными корнями, что О1 все-таки отдельно исследует случаи когда 6n - целое, но тут нужно понимать, что это скорее вопрос аксиоматики. Я думаю, что вполне себе существуют курсы математики в которых f^g определен при любых f для целых g и это вроде никаких противоречий не создает.
5) А вот тут О1 промахнулся: свести задачу к 4-угольнику тут нормально не получается, ну не следует из того, что для каких-то четырех точек равенство не выполнится то, что для всех точек равенство не выполняется + и для 4-х угольника доказательство такое себе.
Выводы: ну что я могу сказать? 4/5 - это очень достойный результат, но очевидно, что на этом олимпиадная математика как явление не закончится, но понятно, что нейросети на нее все-таки повлияют: оригинальных сюжетов в которых нужно подмечать красивые факты, а не просто действовать по алгоритму в будущем явно станет больше, а типовых задач меньше. Ну по крайней мере, мы будем на это надеяться 😎😎😎
Сегодня я решил устроить для вас необычный разбор прошедшего закла олимпиады БИБН (задачи можно посмотреть вот тут), камрады: все эти задачи я дал решить GPT чату, версии О1 (мне сказали, что это самый продвинутый вариант, который есть на сегодняшний день, подписка стоит 200$ в месяц). На скриншотах представлено решение геометрической задачи (идет под номером 2), разбор всех остальных задач можно найти в комментариях под постом.
Отдельно хочу прокомментировать каждую задачку:
1) Решение чистое, О1 даже догадался, в этой задаче я даже не сомневался
2) Да, решение глиняное, да, эту задачу можно решить за 30 секунд, если нарисовать хороший рисунок (О1 думал очень долго, порядка 3 минут), но решение правильное! На самом деле, в плане геометрии я сомневался в его возможностях больше всего
3) Решение чистое, один момент заключается в том, что я пропустил слово "ровно 2 корня", когда записывал условие, но я думаю, что вы можете поверить в то, что О1 может сослаться на то, что производная f(x) имеет один корень и поэтому корней не более, чем два. Доказательство того, что модуль отрицательного корня больше тоже чистое
4) В общем все хорошо, но можно придраться к пункту с отрицательными корнями, что О1 все-таки отдельно исследует случаи когда 6n - целое, но тут нужно понимать, что это скорее вопрос аксиоматики. Я думаю, что вполне себе существуют курсы математики в которых f^g определен при любых f для целых g и это вроде никаких противоречий не создает.
5) А вот тут О1 промахнулся: свести задачу к 4-угольнику тут нормально не получается, ну не следует из того, что для каких-то четырех точек равенство не выполнится то, что для всех точек равенство не выполняется + и для 4-х угольника доказательство такое себе.
Выводы: ну что я могу сказать? 4/5 - это очень достойный результат, но очевидно, что на этом олимпиадная математика как явление не закончится, но понятно, что нейросети на нее все-таки повлияют: оригинальных сюжетов в которых нужно подмечать красивые факты, а не просто действовать по алгоритму в будущем явно станет больше, а типовых задач меньше. Ну по крайней мере, мы будем на это надеяться 😎😎😎
tgoop.com/postupashki/3409
Create:
Last Update:
Last Update:
Нейросети могут взять диплом олимпиады третьего уровня. Этот момент наступил.
Сегодня я решил устроить для вас необычный разбор прошедшего закла олимпиады БИБН (задачи можно посмотреть вот тут), камрады: все эти задачи я дал решить GPT чату, версии О1 (мне сказали, что это самый продвинутый вариант, который есть на сегодняшний день, подписка стоит 200$ в месяц). На скриншотах представлено решение геометрической задачи (идет под номером 2), разбор всех остальных задач можно найти в комментариях под постом.
Отдельно хочу прокомментировать каждую задачку:
1) Решение чистое, О1 даже догадался, в этой задаче я даже не сомневался
2) Да, решение глиняное, да, эту задачу можно решить за 30 секунд, если нарисовать хороший рисунок (О1 думал очень долго, порядка 3 минут), но решение правильное! На самом деле, в плане геометрии я сомневался в его возможностях больше всего
3) Решение чистое, один момент заключается в том, что я пропустил слово "ровно 2 корня", когда записывал условие, но я думаю, что вы можете поверить в то, что О1 может сослаться на то, что производная f(x) имеет один корень и поэтому корней не более, чем два. Доказательство того, что модуль отрицательного корня больше тоже чистое
4) В общем все хорошо, но можно придраться к пункту с отрицательными корнями, что О1 все-таки отдельно исследует случаи когда 6n - целое, но тут нужно понимать, что это скорее вопрос аксиоматики. Я думаю, что вполне себе существуют курсы математики в которых f^g определен при любых f для целых g и это вроде никаких противоречий не создает.
5) А вот тут О1 промахнулся: свести задачу к 4-угольнику тут нормально не получается, ну не следует из того, что для каких-то четырех точек равенство не выполнится то, что для всех точек равенство не выполняется + и для 4-х угольника доказательство такое себе.
Выводы: ну что я могу сказать? 4/5 - это очень достойный результат, но очевидно, что на этом олимпиадная математика как явление не закончится, но понятно, что нейросети на нее все-таки повлияют: оригинальных сюжетов в которых нужно подмечать красивые факты, а не просто действовать по алгоритму в будущем явно станет больше, а типовых задач меньше. Ну по крайней мере, мы будем на это надеяться 😎😎😎
Сегодня я решил устроить для вас необычный разбор прошедшего закла олимпиады БИБН (задачи можно посмотреть вот тут), камрады: все эти задачи я дал решить GPT чату, версии О1 (мне сказали, что это самый продвинутый вариант, который есть на сегодняшний день, подписка стоит 200$ в месяц). На скриншотах представлено решение геометрической задачи (идет под номером 2), разбор всех остальных задач можно найти в комментариях под постом.
Отдельно хочу прокомментировать каждую задачку:
1) Решение чистое, О1 даже догадался, в этой задаче я даже не сомневался
2) Да, решение глиняное, да, эту задачу можно решить за 30 секунд, если нарисовать хороший рисунок (О1 думал очень долго, порядка 3 минут), но решение правильное! На самом деле, в плане геометрии я сомневался в его возможностях больше всего
3) Решение чистое, один момент заключается в том, что я пропустил слово "ровно 2 корня", когда записывал условие, но я думаю, что вы можете поверить в то, что О1 может сослаться на то, что производная f(x) имеет один корень и поэтому корней не более, чем два. Доказательство того, что модуль отрицательного корня больше тоже чистое
4) В общем все хорошо, но можно придраться к пункту с отрицательными корнями, что О1 все-таки отдельно исследует случаи когда 6n - целое, но тут нужно понимать, что это скорее вопрос аксиоматики. Я думаю, что вполне себе существуют курсы математики в которых f^g определен при любых f для целых g и это вроде никаких противоречий не создает.
5) А вот тут О1 промахнулся: свести задачу к 4-угольнику тут нормально не получается, ну не следует из того, что для каких-то четырех точек равенство не выполнится то, что для всех точек равенство не выполняется + и для 4-х угольника доказательство такое себе.
Выводы: ну что я могу сказать? 4/5 - это очень достойный результат, но очевидно, что на этом олимпиадная математика как явление не закончится, но понятно, что нейросети на нее все-таки повлияют: оригинальных сюжетов в которых нужно подмечать красивые факты, а не просто действовать по алгоритму в будущем явно станет больше, а типовых задач меньше. Ну по крайней мере, мы будем на это надеяться 😎😎😎
BY Поступашки - Олимпиады, ЕГЭ, ДВИ
Share with your friend now:
tgoop.com/postupashki/3409