tgoop.com/practicum_math/892
Create:
Last Update:
Last Update:
Сегодня — день Фибоначчи!
Об этих числах можно рассказывать очень много. Мы уже, кстати, удочки закидывали: недавно про десятичные разложения и давно про начос…
Говоря о самом математике Фибоначчи или, как его называют, Леонардо из Пизы, часто вспоминают «заячью» задачу о рождаемости новых пар кроликов — интересный, модельный пример проявления его чисел в популяционных процессах.
Но есть ещё одна область — природная. А именно, филотаксис — наука о расположении листьев, семян и цветков. И расскажем мы об этом проявлении чисел Фибоначчи аж в трёх частях:
↕️ 1️⃣ Модель Фогеля🤭
В 1979 году физик Хельмут Фогель предложил математическую схему, которая потрясающе точно воспроизводит рисунок на подсолнухе:🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨 🎨
Он описал положение n-го семечка двумя формулами в полярных координатах:
r(n) = c√n, θ(n) = n · α,
где α = 2π·(1−φ) — золотой угол, примерно равный 137,5°, а φ = (√5−1)/2 — золотое сечение.
Причём тут Фибоначчи, спросите вы? При том, что вычисляется золотое сечение как предел отношения последовательных чисел Фибоначчи Fₙ/Fₙ₊₁.
Каждое следующее семя «откручивается» от предыдущего на этот угол и смещается от центра на расстояние, пропорциональное корню из n. В результате и возникает узнаваемая спираль, известная как спираль Ферма.
Попробуй чуть-чуть изменить угол — и порядок сразу рушится. Филотаксис оказывается крайне чувствительным к точности: даже отклонение на 1° заметно портит симметрию.
↕️
2️⃣
Секрет золотого угла
↕️
Золотой угол, помимо того что относится к углу, дополняющему его до полного, так же, как тот относится к полному углу, обладает ещё одним важным свойством: он делит круг в иррациональной пропорции.
Если бы он был рациональным делением круга, новые листочки располагались бы «в линию» и мешали бы друг другу, создавая тень. А с иррациональными пропорциями невозможно «попасть в резонанс» — точки редко оказываются на одной линии.
Для растения такое листорасположение — жизненно важный фактор, так как весь падающий свет используется наилучшим образом.
↕️
3️⃣
Фибоначчи и ботаника
↕️
Ещё в XVII веке Иоганн Кеплер заметил, что у многих цветов число лепестков — это число Фибоначчи. Например: 1 у калла, 2 у молочая, 3 у триллиума, 5 у водосбора, 8 у сангвинарии, 13 у тунбергии, 21 у ромашки Шаста.
У подсолнухов и крупных цветов есть спирали на головках — одна направо, другая налево. И очень часто они вырастают в парах 21 и 34, или 34 и 55, или 55 и 89. Подобные спирали можно наблюдать даже у шишек, с такими же соотношениями:
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
🎨
Почему так? Ответ лежит в особенностях роста растений. У основания побега образуются маленькие выступы, называемые примордиями. Эти точки потом растут и превращаются в листья или цветы.
Пионер кристалографии Огюст Браве со своим братом показали, что угол между последовательными примордиями составляет примерно… 137,5°. Ничего не напоминает?
🤯
В 1992 году исследователи Дюди и Кудер разработали динамическую модель, в которой рост примордий регулируется этим углом. Она демонстрирует, что при угле, приближённом к золотому, создаются спирали именно с числами Фибоначчи. И всё потому, что это оптимальный способ экономно расходовать энергию и избегать перекрытий.
Тот, кто дочитал последнюю часть, готов к суровому выводу: «неидеальные» конфигурации с точки зрения эволюции и выживаемости не работают. Да, они встречаются в природе, но гораздо реже «правильных» углов и структур.
Если мнение составить пока трудно и нужно ещё покопаться, то советуем заглянуть в материалы наших коллег по теме:
А если всё понравилось, накидайте 🎉 и мы продолжим бесконечный праздник математики!
#как_устроено

